Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

КАФЕДРА РАДИАЦИОННОЙ ФИЗИКИ И БЕЗОПАСНОСТИ АТОМНЫХ ТЕХНОЛОГИЙ

ОДОБРЕНО

УМС ИФТИС Протокол №1 от 26.04.2023 г.

УМС ИЯФИТ Протокол №01/423-573.1 от 20.04.2023 г.

НТС ЛАПЛАЗ Протокол №1/04-577 от 27.04.2023 г.

НТС ИФИБ Протокол №3 от 11.05.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЭКОЛОГИЯ

Направление подготовки
(специальность)

[1] 15.03.04 Автоматизация технологических процессов и производств

[2] 12.03.04 Биотехнические системы и технологии

[3] 03.03.01 Прикладные математика и физика

[4] 12.03.01 Приборостроение

[5] 14.03.02 Ядерные физика и технологии

[6] 15.03.06 Мехатроника и робототехника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
4	2	72	30	15	0		27	0	3
Итого	2	72	30	15	0	0	27	0	

АННОТАЦИЯ

Описание:

В курсе изучаются основы фундаментальной науки - экологии. Рассматриваются основные глобальные экологические проблемы человечества, вопросы взаимодействия человека с окружающей средой на различных этапах развития общества и современные концепции устойчивого развития. Констатируется пространственно-энергетическая экспансия человека в биосфере и излагаются перспективы ресурсного обеспечения человечества в будущем. Приводятся перспективные направления экологических исследований.

Система экологического образования решает важнейшую задачу повышения общего культурного уровня студентов, понимания ими сложных проблем взаимодействия человека со средой его обитания и учета процессов неоднозначного воздействия научно-технического прогресса на состояние окружающей среды.

Свою задачу преподаватели видят не только в том, чтобы дать студентам необходимый комплекс знаний в области общей и прикладной экологии, но и воспитать экологическое мировоззрение, необходимое техническим специалистам XXI века для того, чтобы создание новых технологий и функционирование технических систем соответствовало все возрастающим экологическим требованиям. Изложение экологических аспектов рассматриваемых вопросов находится часто в тесной связи с изучением основных специализированных предметов, ориентированного на подготовку специалистов для ядерной промышленности.

Это позволяет поднять уровень экологической подготовки специалистов для атомной промышленности и науки.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются:

- 1) усвоение основ необходимого экологического мировоззрения для взаимодействия современного человека с окружающим миром, в том числе в его практической, в частности научно-технической деятельности;
- 2) ознакомление и накопление как качественной, так и особенно количественной информации для возможности самостоятельного ориентирования в вопросах экологических представлений о мире в настоящем и будущем.

Задачей освоения учебной дисциплины является повышение общего культурного уровня студентов, понимание ими сложных проблем взаимодействия человека со средой его обитания и учета процессов неоднозначного воздействия научно-технического прогресса на состояние окружающей среды.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для прохождения курса необходима предварительная подготовка в рамках высшего образования в области физики, химии и математики, особенно в области знания физических законов процессов излучения и решения систем дифференциальных уравнений.

Несмотря на самодостаточность курса, его изучение находится в логической связи с системой непрерывного экологического образования студентов и предваряет преподавание последующих дисциплин, рассматривающих экологические аспекты современного развития,

таких как: «БЖД», «Охрана окружающей среды», «Радиоэкология», «Безопасное обращение и захоронение РАО и ОЯТ» и др.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование индикатора достижения компетенции 3-ОПК-3 [1] — Знать: основные закономерности экономических, экологических, социальных и других ограничений на всех этапах жизненного уровня У-ОПК-3 [1] — Уметь: обосновывать решения при осуществлении профессиональной деятельности, оценивать эффективность результатов профессиональной деятельности

В-ОПК-3 [1] — Владеть: основными закономерностями экономических, экологических, социальных и других ограничений на всех этапах жизненного цикла технических объектов и процессов

ОПК-7 [6] — Способен применять современные экологичные и безопасные методы рационального использования сырьевых и энергетических ресурсов в машиностроении

3-ОПК-7 [6] — знать основные технологии и методы разработки и реализации малоотходных, энергосберегающих и экологически чистых машиностроительных производств, способы рационального использования природных ресурсов в машиностроении.

У-ОПК-7 [6] — уметь прогнозировать последствия своей профессиональной деятельности с точки зрения влияния биосферных процессов и опасных и вредных производственных факторов.

В-ОПК-7 [6] – владеть системным представлением о процессах и явлениях, происходящих в биосфере, о взаимосвязи организма и окружающей среды.

УК-6 [1, 2, 3, 4, 5, 6] — Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни

3-УК-6 [1, 2, 3, 4, 5, 6] — Знать: основные приемы эффективного управления собственным временем; основные методики самоконтроля, саморазвития и самообразования на протяжении всей жизни У-УК-6 [1, 2, 3, 4, 5, 6] — Уметь: эффективно планировать и контролировать собственное время; использовать методы саморегуляции, саморазвития и самообучения В-УК-6 [1, 2, 3, 4, 5, 6] — Владеть: методами управления собственным временем; технологиями приобретения. использования и обновления социо-культурных и профессиональных знаний, умений, и навыков; методиками саморазвития и самообразования в течение всей жизни

УК-8 [1, 2, 3, 4, 5, 6] – Способен

3-УК-8 [1, 2, 3, 4, 5, 6] – Знать: требования,

создавать и поддерживать в повседневной жизни и в профессиональной деятельности безопасные условия жизнедеятельности для сохранения природной среды, обеспечения устойчивого развития общества, в том числе при угрозе и возникновении чрезвычайных ситуаций и военных конфликтов

предъявляемые к безопасности условий жизнедеятельности, в том числе при возникновении чрезвычайных ситуаций и пути обеспечения комфортных условий труда на рабочем месте У-УК-8 [1, 2, 3, 4, 5, 6] — Уметь: обеспечивать безопасные условия жизнедеятельности, в том числе при возникновении чрезвычайных ситуаций и комфортные условия труда на рабочем месте; выявлять и устранять проблемы, связанные с нарушениями техники безопасности на рабочем месте В-УК-8 [1, 2, 3, 4, 5, 6] — Владеть: навыками предотвращения возникновения чрезвычайных ситуаций (природного и техногенного происхождения) на рабочем месте

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин
Экологическое воспитание	Создание условий, обеспечивающих, формирование бережного отношения к природе и окружающей среде (В9)	Использование воспитательного потенциала дисциплин гуманитарного, естественнонаучного и общепрофессионального модулей: - развитие экологической культуры через учебные задания исследовательского характера, подготовку рефератов, докладов, презентаций, эссе, научнообразовательных проектов экологической направленности; - содействие развитию экологического мышления через изучение последствий влияния человека на окружающую среду.
Интеллектуальное воспитание	Создание условий, обеспечивающих, способность анализировать потенциальные цивилизационные и культурные риски и угрозы в развитии различных научных областей (В13)	1. Использование воспитательного потенциала базовых гуманитарных дисциплин. 2. Разработка новых инновационных курсов гуманитарной и междисциплинарной направленности.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

Th.C	<u>-</u>	<u>'</u>	, их объем, ср		1 1	1	
№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	4 Семестр						
1	Часть 1	1-8	16/8/0		25	КИ-8	3- ОПК- 3, У- ОПК- 3, В- ОПК- 7, У- ОПК- 7, В- ОПК- 7, 3-УК- 6, У- УК-6, В- УК-6, 3-УК- 8, У- УК-8, В-
2	Часть 2	9-15	14/7/0		25	КИ-15	3- ОПК- 3, У- ОПК- 3, В- ОПК- 3, 3- ОПК- 7,

 1	T	T	Г	T	
Итого за 4 Семестр	30/15/0		50		У- ОПК- 7, В- ОПК- 7, 3-УК- 6, У- УК-6, В- УК-6, 3-УК- 8, У- УК-8, В- УК-8
	30/13/0			n	<u> </u>
Контрольные мероприятия за 4 Семестр			50	3	3- ОПК- 3, У- ОПК- 3, В- ОПК- 7, У- ОПК- 7, В- ОПК- 7, 3-УК- 6, У- УК-6, В- УК-6, 3-УК- 8, У- УК-8, В-

^{* –} сокращенное наименование формы контроля

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование		
чение			
КИ	Контроль по итогам		
3	Зачет		

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,		
И		час.	, час.	час.		
	4 Семестр	30	15	0		
1-8	Часть 1	16	8	0		
1 - 2	Цели и задачи курса. Экология как функциональная наука.	Всего а	Всего аудиторных часов			
	Эволюция Земли и роль живого вещества.	4	2	0		
	-	Онлайн	I	'		
		0	0	0		
3 - 4	Основные биогеохимические круговороты вещества.	Всего а	удиторных	часов		
	Круговороты воды, углерода, кислорода, азота, фосфора и	4	2	0		
	микроэлементов в биосфере. Антропогенное воздействие	Онлайн	 			
	на круговороты. Экологические системы. Темы экосистем.	0	0	0		
	Основные принципы: взаимосвязь и целостность,					
	продуцирование и разложение, биологический контроль					
	среды, голиостаз.					
5 - 6	Диапазон толерантности, лимитирующие факторы.	Всего а	удиторных	часов		
	Экологическая ниша. Устойчивость экосистемы.	4	2	0		
	Экологическая обстановка современной России,	Онлайн	I			
	московского региона. Семинар: Закон сохранения энергии.	0	0	0		
	Математическая теория борьбы за выживание.7-8					
	недели.Проблемы глобальной экологии. Рост					
	народонаселения. Модели динамики популяций.					
	Возобновимые и					
7 - 8	Проблемы глобальной экологии. Рост народонаселения.		удиторных	часов		
	Модели динамики популяций. Возобновимые и	4	2	0		
	невозобновимые ресурсы: полезные ископаемые, пахотные	Онлайн	I			
	земли, пищевые ресурсы, вода. Исчерпание ресурсов.	0	0	0		
9-15	Часть 2	14	7	0		
9 - 10	Изменение природной среды и климата. Парниковый	Всего а	удиторных	часов		
	эффект. Основная история. Изменение видового	4	2	0		
	разнообразия живой природы. Загрязнение окружающей	Онлайн	H			
	среды. Математическое моделирование биосферных	0	0	0		
	процессов. Энергетика и окружающая среда. Семинар:					
	Термодинамика атмосферы.					
11 - 12	Структура и развитие мировой энергетики.		удиторных			
	Альтернативные источники энергии. Атомная энергетика.	4	2	0		
	Радиоактивное загрязнение окружающей среды. Выбросы	Онлайі	I			
	от АЭС и загрязнение местности. Семинар: Математика	0	0	0		
	роста (потребление энергии, рост народонаселения).13-14					
	недели.					

13 - 14	Основные биологически значимые радионуклиды и пути	Всего а	удиторных	к часов
	их миграции в биосфере. Пищевые цепи поступления	4	2	0
	радионуклидов в организм. Крупнейшие ядерные аварии.	Онлайн	I	
	Последствия для окружающей среды. Методы контроля	0	0	0
	воздуха, воды и почвы. Мониторинг окружающей среды.			
15	Санитарно-гигиеническое нормирование, концепции ПДК.	Всего а	удиторных	к часов
	Экологическое нормирование. Критерии экологического	2	1	0
	ущерба. Экологичес-кие и природные аспекты охраны	Онлайн	I	
	окружающей среды. Оценка риска технологий.	0	0	0
	Экологическая экспертиза.Семинар: Контроль знаний:			
	задачи и рефераты.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Освоение дисциплины проходит в основном по традиционной схеме: лекции, семинарские занятия.

Кроме того, широко используется современные информационные технологии: презентации лекций, демонстрация кино- видеоматериалов, дисплейные классы с персональными ЭВМ для промежуточного контроля (компьютерного тестирования) и оценки знаний.

В лекционном курсе широко используется иллюстративный материал, а также технические средства для демонстрации слайдов. При проведении семинарских занятий и проверке знаний используются компьютерные экологические игры, компьютерные тесты.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие	
		(КП 1)	
ОПК-7	3-ОПК-7	3, КИ-8, КИ-15	

	У-ОПК-7	3, КИ-8, КИ-15
	В-ОПК-7	3, КИ-8, КИ-15
УК-6	3-УК-6	3, КИ-8, КИ-15
	У-УК-6	3, КИ-8, КИ-15
	В-УК-6	3, КИ-8, КИ-15
УК-8	3-УК-8	3, КИ-8, КИ-15
	У-УК-8	3, КИ-8, КИ-15
	В-УК-8	3, КИ-8, КИ-15
ОПК-3	3-ОПК-3	3, КИ-8, КИ-15
	У-ОПК-3	3, КИ-8, КИ-15
	В-ОПК-3	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89	4 — «хорошо»	В	Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
		D	материал, грамотно и по существу
70-74			излагает его, не допуская
			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут

	продолжить обучение без
	дополнительных занятий по
	соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Б 89 Концепции современного естествознания: , Москоw: Проспект, 2015
- 2. ЭИ В38 Сборник тестовых заданий по экологии : учебное пособие для вузов, Москва: НИЯУ МИФИ, 2012
- 3. ЭИ О-75 Основы экологии и охраны окружающей среды : учебное пособие для вузов, В. В. Болятко [и др.] ; ред. : А. И. Ксенофонтов, Москва: МИФИ, 2008
- 4. ЭИ Б79 Сборник задач по курсу "Основы экологии и охраны окружающей среды" : учебное пособие для вузов, В. В. Болятко, А. И. Ксенофонтов, Москва: МИФИ, 2007

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 37 Э40 Экологическое образование и охрана окружающей среды Ч.1 , Москва: Издательство МГТУ им. Н. Э. Баумана, 2014
- 2. 50 Н39 Наука об окружающей среде Т.1 Как устроен мир, , М.: Мир, 1993
- 3. 50 Н39 Наука об окружающей среде Т.2, , М.: Мир, 1993
- 4. 57 О-44 Экология Т.2, , М.: Мир, 1986
- 5. 50 Б79 Сборник задач по курсу "Основы экологии и охраны окружающей среды" : , Болятко В.В.,Ксенофонтов А.И., М.: МИФИ, 2002
- 6. 50 О-75 Основы экологии и охраны окружающей среды : учебное пособие для вузов, В. В. Болятко [и др.] ; ред. : А. И. Ксенофонтов, Москва: МИФИ, 2008
- 7. 50 P35 Охрана природы и окружающей человека среды : Словарь-справочник, Н.Ф. Реймерс, М.: Просвещение, 1992
- 8. 50 И62 Инженерная экология и экологический менеджмент: учебник, под. ред. Н.И. Иванова, И.М. Фадина, М.: ЛОГОС, 2004
- 9. 50 С22 Радиоэкология: Учеб. пособие, Сахаров В.К., М.: МИФИ, 1995

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В первой части курса изучаются основы фундаментальной экологии. Тематические направления, входящие в общую экологию, подразумевают рассмотрение следующих вопросов.

Введение в науку.

Экология - её отношение к другим наукам и значение для человеческой цивилизации. Предмет экологии. Цели и задачи курса. Экология как фундаментальная наука. Глобальные проблемы экологии. Понятие экологической системы. Эволюция Земли и роль живого вещества. Биосфера, техносфера, ноосфера, коэволюция. Поиски концепции устойчивого развития.

Энергия в экологических системах.

Термодинамика биосферы. Энергобалансные модели климата. Состав атмосферы и ее роль в формировании климата и условий жизни на Земле. Баланс энергии в биосфере. Основные биокомпоненты экосистем. Фотосинтез. Концепция продуктивности. Валовая и чистая первичная продукция. Пищевые цепи и трофические уровни. Трансформация солнечной энергии по трофическим цепям. Начала термодинамики в экосистеме. Экологическая эффективность, правило Линдемана. Экологические пирамиды численности, биомассы и энергии.

Биогеохимические круговороты веществ.

Закон сохранения вещества. Кларки химических элементов и состав живого вещества. Классификация круговоротов. Круговороты макроэлементов: углерода, воды, азота, серы, кислорода, фосфора и микроэлементов в биосфере. Роль живых организмов в круговоротах веществ. Антропогенное воздействие на биогеохимические круговороты в биосфере.

Основы фундаментальной экологии.

Экологические системы. Развернутое определение экосистемы. Типы экосистем. Основные принципы и концепции в экологии: взаимосвязь и целостность, продуцирование и разложение в природе, биологический контроль среды, гомеостазис. Лимитирующие факторы, диапазон толерантности. Законы Либиха, Шелфорда. Обобщённая концепция лимитирующих факторов. Обзор физических факторов. Понятие экологической ниши.

Наиболее полно с представленными разделами можно ознакомиться в основной рекомендуемой учебной литературе:

- 1. Одум Ю. Экология в 2-х т. М., Мир, 1986 г.
- 2. Реймерс Н.Ф. Экология. М., 1994 г.
- 3. Болятко В.В., Демин В.М., Евланов В.В., Ксенофонтов А.И., Скотникова О.Г. □Основы экологии и охраны окружающей среды □. Уч. пособие под общей ред. А.И. Ксенофонтова, М.: МИФИ, 2008 г.

По отдельным разделам общей экологии проводятся и семинарские занятия. Тематика этих семинаров выглядит примерно так.

- 1. Баланс вещества и закон сохранения вещества в экосистемах.
- 2. Баланс энергии в биосфере и тепловое загрязнение среды.
- 3. Термодинамика биосферы. Трансформация солнечной энергии по трофическим цепям. Круговорот веществ в природе.

Семинарские занятия проводятся в рамках основного учебного задачника В.В. Болятко, А.И. Ксенофонтов "Сборник задач по курсу основы экологии и охраны окружающей среды", М., МИФИ, 2007 г. Для освоения указанного материала и подготовки к первой (промежуточной) контрольной, совпадающей с семестровым контролем, необходимо прорешать все задачи из разделов 1 и 2, ряд задач из разделов 3, 7 и 8 (задачи 3.8-3.14, 7.3 и 8.4-8.8 соответственно).

Специфика углубленного физико-математического образования студентов МИФИ позволяет более квалифицированно рассматривать на лекционных и семинарских занятиях вопросы, связанные с математическими моделями в биологии, экологии и медицине, например, решение систем дифференциальных уравнений для анализа динамики численности популяций при учете различных аспектов всевозможных типов взаимодействий, оценки риска природных и техногенных катастроф. Этому посвящен раздел:

Математическое моделирование биосферных процессов.

Математика роста. Типы взаимодействия между популяциями. Модели динамики популяций. Динамика изолированной популяции. Моделирование сетей питания и взаимодействия в системе "хищник-жертва" (уравнение Лоттки — Вольтерра). Рост народонаселения. Неравномерность развития и изменения численности населения в различных странах мира. Модели динамики человеческой популяции. Простейшие основы демографии. Прогнозы роста численности населения Земли.

Используя феноменологические представления о зависимости коэффициентов удельной рождаемости и смертности от плотности популяции, можно предложить последовательную схему рассмотрения динамики численности популяции сначала для изолированной системы, а затем с учетом внутривидовой, межвидовой конкуренции и др. видов взаимодействия. Студентам приводится полное математическое изложение формирования и решения системы дифференциальных уравнений Лоттки-Вольтерра. Анализируются различные стабилизирующие и дестабилизирующие факторы отклонения от периодического решения Лоттки-Вольтерра. Приводится математическое подтверждение принципа конкурентного исключения Гаузе и действенности теории естественного отбора. На основе логистического уравнения рассматриваются различные варианты возможного развития человеческого общества в будущем.

Более подробно с данным материалом рекомендуется ознакомиться в книгах:

- 1. Волков Н.Г. Введение в математическую экологию/Тексты лекций. М.: МИФИ, 1990 г.
- 2. Герасимов А.Н. "Математические модели в биологии, экологии и медицине". М., 1998.

Вторая часть курса посвящена в большей степени вопросам охраны окружающей среды, связанным с ее загрязнением и деградацией. Рассматриваются следующие тематические направления:

Ресурсное обеспечение существования человеческого сообщества.

Ресурсы. Вечные, возобновляемые и невозобновляемые ресурсы: Вектор усиления антропогенного воздействия на природу. Экологические кризисы и революционные периоды в истории человеческой цивилизации. Структурный переход человеческого общества в

индустриальную эпоху. Экологические проблемы интенсивного роста численности населения и физического капитала. Состояние некоторых жизненно важных ресурсов Земли: пахотные земли, ресурсы воды, почвы, лесные ресурсы. Энергетические субсидии в сельское хозяйство. Пищевые ресурсы человечества и пути их увеличения. Проблема Мальтуса и пространственно энергетическая экспансия человеческого сообщества в биосфере.

Человек и биосфера.

Загрязнение и деградация окружающей среды. Виды загрязнения. Оценка современного экологического состояния биосферы. Глобальные экологические проблемы современности, их взаимосвязь и взаимозависимость. Природные и техногенные катастрофы. Изменение природной среды, видового разнообразия живой природы и климата. Антропогенное воздействие на баланс энергии в биосфере: локальное, региональное и глобальное тепловое загрязнение. Усиление парникового эффекта. Разрушение озонового слоя.

Принципы охраны окружающей среды.

Санитарно-гигиеническое нормирование, концепция ПДК. Экологические принципы нормирования. Критерии экологического нормирования. Развитие и эволюция экосистемы. Стратегия развития. Концепция климакса. Допустимая антропогенная нагрузка. Критерии экологического ущерба. Экономические и правовые аспекты охраны окружающей среды. Экологическая экспертиза. Мониторинг окружающей среды.

Основой для изучения этих разделов опять же служит базовая учебная литература, указанная выше.

Серьезное внимание экологическим аспектам математики роста уделяется и на семинарских занятиях. Рассматривается цикл задач по использованию математических моделей как для оценки степени исчерпания природных ресурсов, так и для анализа роста численности человеческой популяции. Этому посвящены семинары:

- 1. Математика роста. Рост численности населения и исчерпание ресурсов Экспоненциальная модель. Распределение Гаусса.
- 2. Математика роста. Рост численности населения и исчерпание ресурсов. Логистическая кривая. Потенциальная емкость народонаселения нашей планеты. Демографический прогноз.

Спектр рассматриваемых при этом задач сосредоточен в разделах 3 и 4 учебного задачника (задачи: 3.1-3.7, 4.1-4.11).

Примером возможности использования студентами накопленных знаний и творческого подхода является, скажем, постановка перед ними на семинаре проблемы самостоятельно оценить потенциальную емкость народонаселения нашей планеты или провести комплексную оценку количественных показателей парникового эффекта в будущем столетии. Если студенты предлагают в качестве ограничения дальнейшего роста населения ресурсы питания, то им предлагается дальнейшая трансформация вопроса: оценить потенциальную емкость народонаселения исходя из концепции трофических цепей и данных о распределении продуктивности по различным экосистемам планеты.

Особое внимание в общем курсе экологии в инженерно-физическом институте уделяется экологическим вопросам ядерной энергетики и радиационной безопасности. Подробное изучение ядерно-топливного цикла (ЯТЦ) и технологических аспектов использования атомной энергии, экологических проблем, связанных с радиационным загрязнением окружающей среды, ознакомление с крупнейшими ядерными авариями и их последствиями для окружающей среды проводится в рамках разделов:

Энергия и цивилизация.

Энергетика и окружающая среда. Топливно-энергетический баланс. Структура и развитие мировой энергетики. Прогнозы энергопотребления. Традиционные источники энергии, полезные ископаемые: уголь, нефть, газ и исчерпание ресурсов. Альтернативные источники энергии. Атомная энергетика. Ядерный топливный цикл и его компоненты. Экологические проблемы атомной энергетики. Перспективы обеспечения энергопотребления человеческого общества в будущем. Энергетические перспективы России.

Радиационная экология.

Основные дозиметрические величины и единицы их измерения. Естественный радиационный фон. Нормы радиационной безопасности. Радиоактивное загрязнение окружающей среды. Воздействие предприятий ядерной энергетики на окружающую среду. Выбросы от АЭС и загрязнение местности. Основные биологически значимые радионуклиды и пути их миграции в биосфере. Пищевые цепи поступления радионуклидов в организм. Крупнейшие ядерные аварии и их последствия для окружающей среды.

Эти вопросы отражены в следующем материале:

- 1. Харитонов В.В. □Энергетика. Технико-экономические основы □. М.: МИФИ, 2007.
- 2. Болятко В.В., Демин В.М., Евланов В.В., Ксенофонтов А.И., Скотникова О.Г. \square Основы экологии и охраны окружающей среды \square . Уч. пособие под общей ред. А.И. Ксенофонтова, М.: МИФИ, 2008 г.
 - 3. Сахаров В.К. Радиоэкология. СПб., Изд-во □Лань□, 2006.

Примерная тематика семинарских занятий по этим разделам выглядит так:

- 1. Парниковый эффект. Структура топливно-энергетического баланса (ТЭБ).
- 2. Радиоэкология. Радиоактивный распад и биологическое действие излучения.

Здесь необходимо ознакомиться с решением задач из разделов 5, 6 и частично из раздела 8 учебного пособия. И опять студентам предоставляется возможность творческого подхода: для получения количественной оценки возможного влияния парникового эффекта им приходится самостоятельно предлагать и анализировать структуру топливно-энергетического баланса человечества в будущем.

В конце семестра по второй части курса студентам предлагается выполнить вторую (зачетную) контрольную работу. Каждая из двух контрольных работ состоит из 3 задач по принципу «Один раздел (один семинар) – одна задача». Максимальный вес каждой решенной задачи оценивается приблизительно в 10 баллов.

Предлагаемые на зачете вопросы и задачи полностью отражаются представленной в данных методических указаниях тематикой лекционных и семинарских занятий. Спектр основных вопросов по данному курсу также представлен в указанном выше учебном задачнике. На каф. № 1 разработана и внедрена в практику система автоматизированного контроля знаний для студентов различных специальностей по экологическим вопросам. Для более качественной подготовки к различным вариантам компьютерного тестирования в НИЯУ МИФИ издано специальное учебное пособие:

1. Весна Е.Б., Демин В.М., Ксенофонтов А.И. Тестовые задания по экологии. М.: МИФИ, $2012~\Gamma$.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Последние десятилетия XX века характеризуются резким обострением глобальных проблем современной цивилизации. Среди наиболее наболевших проблем - развивающийся глобальный экологический кризис. Нарастание противоречия между потребительскими

возможностями человеческого общества и масштабом и характером природоохранной деятельности выдвигает на первый план задачу по экологизации всех сфер общественных отношений. На наш взгляд, ее решение следует начинать с формирования экологической культуры общества. В связи с озабоченностью современным состоянием природы Земли перед всем человечеством стоит проблема выживаемости, и поэтому экологические дисциплины являются жизненно важными в процессе обучения и получения как естественнонаучного, так и гуманитарного образования в любой стране Европы.

Система экологического образования в высшей школе решает важнейшую задачу повышения общего культурного уровня студентов и выпускников ведущих вузов страны, понимания ими сложных проблем взаимодействия человека со средой его обитания и учета процессов неоднозначного воздействия научно-технического прогресса на состояние окружающей среды. Целью данного курса является: 1) усвоение основ необходимого экологического мировоззрения для взаимодействия современного человека с окружающим миром, в том числе в его практической, в частности научно-технической деятельности, и 2) ознакомление и накопление как качественной, так и особенно количественной информации для возможности самостоятельного ориентирования в вопросах экологических представлений о мире в настоящем и будущем.

Свою задачу преподаватели МИФИ видят не только в том, чтобы дать студентам необходимый комплекс знаний в области общей и прикладной экологии, но и воспитать экологическое мировоззрение, необходимое техническим специалистам XXI века для того, чтобы создание новых технологий и функционирование технических систем соответствовало все возрастающим экологическим требованиям. Изложение экологических аспектов рассматриваемых проблем находится часто в тесной связи с изучением основных специализированных предметов нашего института, ориентированного на подготовку специалистов для ядерной промышленности.

Помимо решения проблемы общего экологического образования выпускников вузов это позволяет поднять и расширить непосредственно уровень подготовки специалистов для атомной промышленности и науки.

В настоящем курсе изучаются основы фундаментальной науки - экологии и вопросы охраны окружающей среды. Обсуждаются основные глобальные экологические проблемы человечества. Рассматриваются вопросы взаимодействия человека с окружающей средой на различных этапах развития общества, современные концепции устойчивого развития. Констатируется пространственно энергетическая экспансия человека в биосфере, и излагаются перспективы ресурсного обеспечения человечества в будущем. Приводятся перспективные направления экологических исследований.

Специфика углубленного физико-математического образования студентов МИФИ позволяет более квалифицированно рассматривать на лекционных и семинарских занятиях вопросы, связанные с математическими моделями в биологии, экологии и медицине, например, решение систем дифференциальных уравнений для анализа динамики численности популяций при учете различных аспектов всевозможных типов взаимодействий, оценки риска природных и техногенных катастроф.

Используя феноменологические представления о зависимости коэффициентов удельной рождаемости и смертности от плотности популяции, можно предложить последовательную схему рассмотрения динамики численности популяции сначала для изолированной системы, а затем с учетом внутривидовой, межвидовой конкуренции и др. видов взаимодействия. Студентам приводится полное математическое изложение формирования и решения системы

дифференциальных уравнений Лоттки-Вольтерра. Анализируются различные стабилизирующие и дестабилизирующие факторы отклонения от периодического решения системы Лоттки-Вольтерра. Приводится математическое подтверждение принципа конкурентного исключения Гаузе и действенности теории естественного отбора. На основе логистического уравнения рассматриваются различные варианты возможного развития человеческого общества в будущем. Анализ последующего опроса студентов свидетельствует, что молодым людям с естественнонаучным складом ума это позволяет лучше усваивать и экологические аспекты рассматриваемой проблемы.

Особое внимание в общем курсе экологии в инженерно-физическом институте уделяется экологическим вопросам ядерной энергетики и радиационной безопасности. С учётом полученных знаний остаётся время на подробное изучение ядерно-топливного цикла (ЯТЦ) и использования атомной энергии. технологических аспектов Большой преподавательского состава и научных сотрудников института в данных промышленности позволяет квалифицированно и подробно излагать экологические проблемы, связанные с радиационным загрязнением окружающей среды и вопросы захоронения радиоактивных отходов, изучать распространение основных биологически значимых радионуклидов в среде и пути их миграции в биосфере, знакомиться с крупнейшими ядерными авариями и их последствиями для окружающей среды.

Автор(ы):

Демин Виктор Максимович, к.ф.-м.н., доцент