Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ КОНДЕНСИРОВАННЫХ СРЕД

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ МИКРО- И НАНОТЕХНОЛОГИИ

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	24	24	0		15-24	0	Э
Итого	3	108	24	24	0	0	15-24	0	

АННОТАЦИЯ

Рассмтриваются физико-химические особенности формирования микро- и наноразмерных структур, основные технологические методы и перспективы их развития. Большое внимание уделяется физическим и технологическим ограничениям на предельные параметры микро- и наноструктур, их электронным и оптическиме свойствам.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения дисциплины является изучение основных физико-химических процессов, лежащих в природе различных методов микро- и нанотехнологии: взаимодействие потока расплава с потоком газа и жидкости, приводящее к генерации наночастиц; взаимодействие потока жидких и твердых наночастиц с поверхностью подложки; адсорбция и десорбция кластеров и молекул. Свойства и области применения наночастиц.

Задачей преподавания дисциплины является формирование у студентов углубленных знаний о физико-химических явлениях и процессах, имеющих отношение к микро- и нанотехнологиям.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина "Физико-химические основы процессов микро-и нанотехнологии" базируется на отдельных компонентах компетенций, сформированных у обучающихся в ходе изучения курса физики и химии в средней школе, а также предшествующих дисциплинах:

- Введение в современные нанотехнологии / Introduction to Modern Nanotechnology
- Неорганическая и органическая химия
- Материаловедение в микро- и наноэлектронике
- Технология материалов электронной техники
- Физическая химия

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции		
научно-исследовательский					

ПК-1.1 [1] - Способен 3-ПК-1.1[1] - Знать Анализ научно-Материалы, основные концепции технической компоненты, применять информации, электронные физики представления, отечественного и приборы, концепции и модели конденсированного зарубежного опыта по устройства, физики состояния, физики установки, методы конденсированного твердого тела и тематике исследования их исследования, состояния для физики проектирования и описания явлений и полупроводников, конструирования. процессов в твердых имеющие значение Технологические телах, качественного и для электроники и процессы количественного наноэлектроники; производства, У-ПК-1.1[1] - Уметь анализа параметров и характеристик твердых диагностическое и применять технологическое тел для приложений представления, электроники и оборудование, концепции и модели наноэлектроники. математические физики модели, алгоритмы конденсированного Основание: решения типовых состояния для задач в области Профессиональный описания явлений и стандарт: 40.011 электроники и процессов в наноэлектроники. твердотельных Современное приборах и программное и устройствах информационное электроники и наноэлектроники; обеспечение процессов В-ПК-1.1[1] - Владеть моделирования и основными метолами проектирования качественного и изделий количественного электроники и анализа параметров и наноэлектроники. характеристик Инновационные твердых тел для приложений технические решения в сфере электроники и базовых постулатов наноэлектроники проектирования, технологии изготовления и применения электронных приборов и устройств. производственно-технологический ПК-1.2 [1] - Способен 3-ПК-1.2[1] - Знать Проведение Материалы, технологических компоненты, выбирать и применять номенклатуру электронные современное процессов ключевого приборы, производства технологическое технологического материалов и изделий устройства, оборудование для оборудования, электронной техники установки, методы создания новых используемого для создания новых их исследования, приборов микро- и проектирования и наноэлектроники приборов микро- и

конструирования.

наноэлектроники;

	Технологические	Основание:	У-ПК-1.2[1] - Уметь
	процессы	Профессиональный	выбирать и применять
	производства,	стандарт: 40.011	современное
	диагностическое и	Стандарт. 40.011	технологическое
	технологическое		оборудование для
	оборудование,		создания новых
	математические		приборов микро- и
	модели, алгоритмы		наноэлектроники;
	решения типовых		В-ПК-1.2[1] - Владеть
	задач в области		основными
	электроники и		технологическими
	наноэлектроники.		методами,
	Современное		используемыми в
	программное и		процессе
	информационное		производства
	обеспечение		приборов микро- и
	процессов		наноэлектроники
	моделирования и		
	проектирования		
	изделий		
	электроники и		
	наноэлектроники.		
	Инновационные		
	технические		
	решения в сфере		
	базовых постулатов		
	проектирования,		
	технологии		
	изготовления и		
	применения		
	электронных		
	приборов и		
	устройств.		
внедрение результатов	материалы,	ПК-10 [1] - Способен к	3-ПК-10[1] - Знание
исследований и	компоненты,	модернизации	физических основ
разработок в	электронные	существующих и	современных микро- и
производство;	приборы,	внедрению новых	нанотехнологий,
выполнение работ по	устройства,	методов и	технологий
технологической	установки, методы	оборудования для	гетероструктурной и
подготовке	их исследования,	измерений параметров	СВЧ-электроники.;
производства	проектирования и	наноматериалов и	У-ПК-10[1] - Умение
материалов и изделий	конструирования,	наноструктур	творчески применять
электронной техники;	технологические	1, 11	современное
проведение	процессы	Основание:	оборудование для
технологических	производства,	Профессиональный	измерений
процессов	диагностическое и	стандарт: 29.007,	параметров
производства	технологическое	40.003	наноматериалов и
материалов и изделий	оборудование,		наноструктур;
электронной техники;	алгоритмы решения		В-ПК-10[1] -
контроль за	типовых задач		Владение методами
соблюдением	типовых зада і		измерений
технологической			параметров
10AHOJIOI II TORON	l		паратетров

дисциплины и		наноматериалов и
приемов энерго - и		наноструктур
ресурсосбережения;		
подготовка		
документации и		
участие в работе		
системы менеджмента		
качества на		
предприятии;		
организация		
метрологического		
обеспечения		
производства		
материалов и изделий		
электронной техники		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование чувства	профессионального модуля для
	личной ответственности за	формирования чувства личной
	научно-технологическое	ответственности за достижение
	развитие России, за	лидерства России в ведущих научно-
	результаты исследований и	технических секторах и
	их последствия (В17)	фундаментальных исследованиях,
	, ,	обеспечивающих ее экономическое
		развитие и внешнюю безопасность,
		посредством контекстного обучения,
		обсуждения социальной и
		практической значимости результатов
		научных исследований и
		технологических разработок.
		2.Использование воспитательного
		потенциала дисциплин
		профессионального модуля для
		формирования социальной
		ответственности ученого за
		результаты исследований и их
		последствия, развития
		исследовательских качеств
		посредством выполнения учебно-
		исследовательских заданий,
		ориентированных на изучение и
		проверку научных фактов,
		критический анализ публикаций в
		профессиональной области,
		вовлечения в реальные
		междисциплинарные научно-
		исследовательские проекты.

Профессиональное
воспитание

Создание условий, обеспечивающих, формирование ответственности и аккуратности в работе с опасными веществами и при требованиях к нормам высокого класса чистоты (В35)

1.Использование воспитательного потенциала профильных дисциплин «Введение в специальность», «Введение в технику физического эксперимента», «Измерения в микрои наноэлектронике», «Информационные технологии в физических исследованиях», «Экспериментальная учебноисследовательская работа» для: формирования навыков безусловного выполнения всех норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в этих организациях, через выполнение студентами практических и лабораторных работ, в том числе с использованием современных САПРов для моделирования компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ; 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой

промышленности - формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов. Профессиональное Создание условий, 1.Использование воспитательного обеспечивающих, потенциала профильных дисциплин «Введение в специальность», формирование коммуникативных навыков «Введение в технику физического

воспитание

в области разработки и производства полупроводниковых изделий (ВЗ6)

эксперимента», «Измерения в микрои наноэлектронике», «Информационные технологии в физических исследованиях», «Экспериментальная учебноисследовательская работа» для: формирования навыков безусловного выполнения всех норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в этих организациях, через выполнение студентами практических и

лабораторных работ, в том числе с использованием современных САПРов для моделирования компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ; 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности - формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	И	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
		Недели	Лекции/ Пр (семинары Лабораторі работы, час	Обязат. те контроль неделя)	Максі балл з	Аттеста раздела неделя)	Индикат освоения компетен
	7 Семестр						
1	Первый раздел	1-8	12/12/0		25	Кл-8	3-ПК-1.1, У-ПК-1.1, У-ПК-1.2, 3-ПК-10,
							У-ПК-10, В-ПК-10
2	Второй раздел	9-16	12/12/0		25	Реф-16	У-ПК-1.1, В-ПК-1.1, 3-ПК-1.2, 3-ПК-10
	Итого за 7 Семестр		24/24/0		50		
	Контрольные мероприятия за 7 Семестр				50	Э	3-ПК-1.1, У-ПК-1.1, В-ПК-1.2, 3-ПК-10, В-ПК-10

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
Кл	Коллоквиум
Реф	Реферат
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	7 Семестр	24	24	0
1-8	Первый раздел	12	12	0
1 - 2	Термодинамика фазовых превращений в	Всего а	аудиторных	часов
	однокомпонентных системах	3	3	0
	Возможные фазовые превращения.	Онлайі	H	
	Гомогенное зарождение новой фазы.	0	0	0
	Работа образования зародыша новой фазы в зависимости			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	1	
от радиуса и переохлаждения		
Конденсация пара. Потенциальный барьер для перехода		
пар-жидкость.		
Кристаллизация из раствора. Уравнение Оствальда-		
Фрейндлиха.		
Изменение химического потенциала при переохлаждении		
жидкости.		
Кристаллизация из расплава. Снижение температуры		
плавления ультра малых частиц		
Гетерогенная нуклеация. Гетерогенное зарождение новой		
фазы.		
З Основы классификации наноматериалов Всего а	аудиторных	часов
Терминологические подходы к понятию 2	2	0
«наноматериалы» Онлайі	H	I.
Принципы классификации наноматериалов 0	0	0
Особенности свойств наноматериалов. Размерные		
эффекты.		
	удиторных	часов
Наночастицы с гранецентрированной решеткой.	3	0
Магические числа .Понятие о кластерах . Онлайн		
Виды кластеров.	0	0
Упорядоченные решетки наночастиц		
в коллоидных суспензиях. Твердотельные нанокластеры и		
наноструктуры .		
Матричные нанокластеры		
Кластеры на основе оксидов металлов		
	ц удиторных	часов
Структуры различной размерности. Квантовые ямы,	2	0
проволоки и точки.	_	U
Системы 0D, квантовые точки. Люминесценция. Роль 0	0	0
размера частицы. Дискретные уровни энергии в		U
нанокристаллах. Люминесценция коллоидных частиц		
<u> </u>		
Коллоидные нанокристаллы. Диапазоны флуоресценции		
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов.		
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса.		
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки.	Null trop w	насор
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки.	аудиторных Гэ	1
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Всего а Синтез материалов с помощью золь-гель методов.	2	часов
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. 2 Гидролиз. Поликонденсация. Онлайн	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция.	2	1
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему;	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева пластины, на которой осаждается пленка; а также датчики	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева пластины, на которой осаждается пленка; а также датчики температуры.	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева пластины, на которой осаждается пленка; а также датчики температуры. Виды химического осаждения из паровой фазы: реакторы	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева пластины, на которой осаждается пленка; а также датчики температуры. Виды химического осаждения из паровой фазы: реакторы «с горячей стенкой» и реакторы с «холодной стенкой».	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева пластины, на которой осаждается пленка; а также датчики температуры. Виды химического осаждения из паровой фазы: реакторы «с горячей стенкой» и реакторы с «холодной стенкой». Преимущества CVD. Приложения.	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева пластины, на которой осаждается пленка; а также датчики температуры. Виды химического осаждения из паровой фазы: реакторы «с горячей стенкой» и реакторы с «холодной стенкой». Преимущества CVD. Приложения. Физическое осаждение из паровой фазы (PVD). Рабочая	2	0
Коллоидные нанокристаллы. Диапазоны флуоресценции нанокристаллов, изготовленных из разных материалов. Экситоны Квантовые точки большого и малого радиуса. Экситонные поправки. 8 Керамика и стекло. Синтез материалов с помощью золь-гель методов. Гидролиз. Поликонденсация. Химическое осаждение (CVD). Рабочая концепция. Основные этапы процесса CVD. Состав типичной системы CVD: источники и питающие линии для газов; регуляторы массового расхода для дозирования газов в систему; реакционная камера или реактор; система для нагрева пластины, на которой осаждается пленка; а также датчики температуры. Виды химического осаждения из паровой фазы: реакторы «с горячей стенкой» и реакторы с «холодной стенкой». Преимущества CVD. Приложения.	2	0

	Недостатки. Приложения.			
9-16	Второй раздел	12	12	0
1 - 2	Пористый кремний.	Всего а	удиторных	часов
	Получение пористого кремния. Конструкции	2	2	0
	электрохимической ячейки для получения слоев ПК.	Онлайі	Ŧ	
	Анодная реакция растворения кремния в водных	0	0	0
	растворах НF. Физико-химия анодного			
	электрохимического окисления кремния. Метод Унно –			
	Имаи получения ПК. Светоизлучающие диоды на основе			
	пористого кремния. Фотоэлектрические преобразователи			
	для солнечной энергетики. Химические датчики на основе			
	пористого кремния. Применение пористого кремния в			
	медицине			
2 - 3	Углеродные нанокластеры	Всего а	удиторных	часов
	Углеродные волокна. Углеродные волокна с полимерной	2	2	0
	матрицей - композитные материалы.	Онлайі	H	1
	Графен. Получение графена. Механическое отслаивание.	0	0	0
	Химическое отслаивание. Химическое отслаивание с			
	применением оксида графена. Химическое осаждение из			
	паровой фазы. Пиролиз карбида кремния. Физические			
	свойства графена. Гибридизация электронов.			
	Кристаллическая решетка. Зонная структура графена.			
	Линейный закон дисперсии. Эффективная масса.			
	Квантовый эффект Холла			
3 - 4	Новые углеродные наноматериалы. Углеродные	Всего а	аудиторных	часов
	нанотрубки	2	2	0
	Графеновые листы. Углеродные нанотрубки. Хиральность.	Онлайі	H	
	Одностенные нанотрубки. Многостенные нанотрубки.	0	0	0
	Применение углеродных нанотрубок. Физико-химия роста			
	нанотрубок. Методы получения УНТ			
4 - 5	Фотонные кристаллы	Всего а	удиторных	часов
	Теория фотонных запрещённых зон. Дефекты в	2	2	0
	кристаллической решетке как элемент структуры	Онлайн	H	
	фотонного кристалла.	0	0	0
	Примеры применения фотонных кристаллов			
6 - 7	Метаматериалы	Всего а	аудиторных	часов
	Метаматериалы. Странности отрицательного	2	2	0
	преломления. Свойства и строение метаматериалов.	Онлайн	I	
	Создание метаматериалов.	0	0	0
	Практические аспекты. Гиперболические метаповерхности			
7 - 8	Методы исследования наноматериалов	Всего а	аудиторных	часов
	Микроскопия. Сканирующие зонды. Методы, основанные	2 2 0		
	на электромагнитной	Онлайн	H	
	природе вещества и излучения	0	0	0

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы

AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации программы используются следующие технологии:

- лекции по курсу традиционного типа, с применением проектора и презентаций по избранным темам;
- семинары практическая работа по решению задач, с опорой на лекционный материал, для наилучшего его усвоения;
 - самостоятельная работа студентов.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-10	3-ПК-10	Э, Кл-8, Реф-16
	У-ПК-10	Кл-8
	В-ПК-10	Э, Кл-8
ПК-1.1	3-ПК-1.1	Э, Кл-8
	У-ПК-1.1	Э, Кл-8, Реф-16
	В-ПК-1.1	Реф-16
ПК-1.2	3-ПК-1.2	Реф-16
	У-ПК-1.2	Кл-8
	В-ПК-1.2	Э

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил

	I	1
		программный материал, исчерпывающе,
		последовательно, четко и логически
		стройно его излагает, умеет тесно
		увязывать теорию с практикой,
		использует в ответе материал
		монографической литературы.
	В	Оценка «хорошо» выставляется студенту,
	С	если он твёрдо знает материал, грамотно и
4 – « <i>xopowo</i> »		по существу излагает его, не допуская
-	D	существенных неточностей в ответе на
		вопрос.
3 — «удовлетворительно»		Оценка «удовлетворительно»
	Е	выставляется студенту, если он имеет
		знания только основного материала, но не
		усвоил его деталей, допускает неточности,
		недостаточно правильные формулировки,
		нарушения логической
		последовательности в изложении
		программного материала.
2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
		выставляется студенту, который не знает
		значительной части программного
		материала, допускает существенные
		ошибки. Как правило, оценка
		«неудовлетворительно» ставится
		студентам, которые не могут продолжить
		обучение без дополнительных занятий по
		соответствующей дисциплине.
	«удовлетворительно» 2 —	4 – «хорошо» С 3 – «удовлетворительно» E 2 – F

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ П 49 Физико-химические основы нанотехнологий : учебник, Поленов Ю. В., Егорова Е. В., Санкт-Петербург: Лань, 2022
- 2. ЭИ Д 64 Физико-химия наночастиц : учебное пособие для вузов, Доломатов М. Ю., Москва: Юрайт, 2021

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 620 Ф50 Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза : учеб. пособие для вузов, Боровинская И.П. [и др.], М.: Бином, 1999
- 2. 66 А49 Физико-химические основы микро- и наноэлектроники : учебное пособие, Алехин А.П., Москва: МФТИ, 2011
- 3. 621.3 К78 Физико-химические основы технологии полупроводниковых материалов : Учебник для вузов, Крапухин В.В., Соколов И.А., Кузнецов Г.Д., М.: Металлургия, 1982

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Курс включает в себя лекционные и практические занятия. Для успешного освоения курса полезно вспомнить некоторые темы из курса " Физическая химия".

На практических занятиях студенты решают задачи, в том числе и в интерактивной форме (обсуждение). Поощряется активное участие в обсуждении задач, а также умение своевременно задавать вопросы для прояснения всех непонятных моментов по пройденному материалу. Помимо лекционных и семинарских занятий курс включает в себя самостоятельную работу студентов. Данное время отводится для самостоятельной переработки и повторения материала, выполнения домашних заданий, устранения долгов, накопленных во время семестра, а также для самостоятельной подготовки к сдаче теоретического материала . Во время самостоятельной подготовки к сдаче теоретического материала студенты учатся работать с научной литературой.

Итоговые баллы складываются из: 1) результатов коллоквиума и устного опроса; 2) результатов контроля посещаемости; 3) результатов оценки работы студента в интерактивном режиме.

Получение положительной оценки по каждой проверочной работе (коллоквиум и устный опрос) является необходимым условием получения итоговой положительной оценки. В случае пропуска или получения отрицательной оценки самостоятельная работа должна быть переделана и сдана во время зачетной недели в конце семестра. Положительная оценка (аттестация) каждого раздела необходима для допуска к экзамену.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

На первом занятии преподаватель:

знакомит студентов с целями и задачами преподаваемой дисциплины, определяет ее место в образовательной программе, обозначает междисциплинарные связи;

обеспечивает согласование содержания и устранение дублирования учебного материала с другими дисциплинами образовательной программы;

уточняет наполнение лекций и планы практических (семинарских) занятий в соответствии с рабочей программой дисциплины, с учетом контингента и уровня подготовки студентов;

рекомендует литературу с выделением основного учебника курса; доводит до сведения студентов систему оценки знаний.

Занятия по дисциплине стоят из следующих частей:

- лекции;
- -семинары;
- самостоятельная работа студентов.
- 1. Лекционные занятия представляет собой систематическое, последовательное. монологическое изложение преподавателем учебного материала, как правило, теоретического характера. Цель занятий организация целенаправленной познавательной деятельности студентов по овладению программным материалом по теме.

Структура лекции: вступление, основная часть, заключение.

Во вступлении преподаватель отмечает цель лекции и ее план.

В основной части приводится изложение содержания лекции в строгом соответствии с предложенным планом.

Формат лекции может быть, как очный, так и дистанционный с использованием средств видеоконференцсвязи.

В заключении подводится общий итог лекции, обобщение материала, формулировка выводов по теме лекции; ответы на вопросы студентов.

- 2. На семинарских занятиях студенты решают задачи по темам пройденных лекций с целью закрепленя изученного материала. Преподаватель показывает решение типовой задачи и далее предлагает студентам задачи для самостоятельного решения с проверкой у доски.
- 3. Самостоятельная работа учебная, учебно-исследовательская работа студентов, выполняется во внеаудиторное время по заданию и при методическом руководстве преподавателя. Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, научных публикаций, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.

Роль преподавателя в организации и руководстве самостоятельной работой студентов включает:

четкое планирование содержания и объема самостоятельной работы; организацию, контроль и анализ результатов самостоятельной работы.

В ходе руководства самостоятельной работой студентов преподаватель приобщает их к научному творчеству, поиску и решению актуальных современных проблем. Преподаватель должен обеспечить мотивацию индивидуальной самостоятельной работы студентов посредством проверки промежуточных результатов, консультаций, самопроверки.

Автор(ы):

Сигловая Наталия Владимировна