Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА МОЛЕКУЛЯРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ЛАПЛАЗ

Протокол № 1/08-577

от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ИОННАЯ ОПТИКА

Направление подготовки (специальность)

[1] 16.03.01 Техническая физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	2	72	0	0	48		24	0	3
Итого	2	72	0	0	48	32	24	0	

АННОТАЦИЯ

В курсе изучаются теоретические основы ионной оптики. Рассматриваются различные типы линз и их ионно-оптические свойства.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины являются получение базовых знаний по движению заряженных частиц в электрических и магнитных полях, изучение закономерностей движения заряженных частиц в электрических и магнитных полях; получение навыков расчета движения заряженных частиц в полях; освоение принципов теоретического моделирования ионно-оптических систем.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Принципы построения и изучения ионной-оптических систем в физических исследованиях являются важной частью научно исследовательской инженерно—внедренческой работы инженера-физика. В качестве базовых знаний для усвоения дисциплины необходимы знания стандартного цикла курсов общей физики и высшей математики, умение пользоваться персональным компьютером и некоторыми прикладным программным обеспечением.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исс.	ледовательский	
Применение	Наноразмерные	ПК-2.1 [1] - Способен	3-ПК-2.1[1] - Знать
эффективных методов	системы, атомно-	участвовать в	физико-теоретические
исследования физико-	молекулярные	проведении	концепции,
технических объектов,	смеси, масс-	теоретических и	аналитические
процессов и	спектрометрия и	аналитических	методы, методы
материалов.	спектрометрия	исследований в	обработки
Проведение	ионной	предметной области, в	экспериментальных
стандартных и	подвижности,	построении	данных в области
сертификационных	композиционные	физических,	физики

испытаний	материалы.	математических и	наноразмерных и
технологических		компьютерных моделей	неравновесных
процессов и изделий с		изучаемых процессов и	систем, масс-
использованием		явлений.	спектрометрии и
современных			спектрометрии
аналитических		Основание:	ионной подвижности,
средств технической		Профессиональный	композиционных
физики.		стандарт: 40.011,	материалов.;
		40.044, 40.104, 40.167	У-ПК-2.1[1] - Уметь
			применять физико-
			теоретические
			концепции,
			аналитические
			методы, методы
			обработки
			экспериментальных
			данных в области
			физики
			наноразмерных и
			неравновесных
			систем, масс-
			спектрометрии и
			спектрометрии
			ионной подвижности,
			композиционных
			материалов.;
			В-ПК-2.1[1] - Владеть
			аналитическими
			методами, методами
			обработки
			экспериментальных
			данных в области
			физики
			наноразмерных и
			неравновесных
			систем, масс-
			спектрометрии и
			спектрометрии
			ионной подвижности,
			композиционных
			материалов.
Применение	Наноразмерные	ПК-1 [1] - Способен	3-ПК-1[1] - Знать
эффективных методов	системы, атомно-	применять	эффективные методы
исследования физико-	молекулярные	эффективные методы	исследования физико-
технических объектов,	смеси, масс-	исследования физико-	технических объектов,
процессов и	спектрометрия и	технических объектов,	процессов и
материалов.	спектрометрия	процессов и	материалов,
Проведение	ионной	материалов, проводить	современные
стандартных и	подвижности,	стандартные и	аналитические
сертификационных	композиционные	сертификационные	средства технической
испытаний	материалы.	испытания	физики;
технологических		технологических	У-ПК-1[1] - Уметь

процессов и изделий с	процессов и изделий с	проводить
использованием	использованием	стандартные и
современных	современных	сертификационные
аналитических	аналитических средств	испытания
средств технической	технической физики	технологических
физики.		процессов и изделий с
	Основание:	использованием
	Профессиональный	современных
	стандарт: 40.011, 40.167	аналитических
		средств технической
		физики ;
		В-ПК-1[1] - Владеть
		эффективными
		методами
		исследования физико-
		технических объектов,
		процессов и
		материалов,
		современными
		аналитическими
		средствами
		технической физики
		испытаний
		технологических
		процессов и изделий

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели воспитания	Задачи воспитания (код)	Воспитательный потенциал дисциплин
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование чувства	профессионального модуля для
	личной ответственности за	формирования чувства личной
	научно-технологическое	ответственности за достижение
	развитие России, за	лидерства России в ведущих научно-
	результаты исследований	технических секторах и
	и их последствия (В17)	фундаментальных исследованиях,
		обеспечивающих ее экономическое
		развитие и внешнюю безопасность,
		посредством контекстного обучения,
		обсуждения социальной и
		практической значимости результатов
		научных исследований и
		технологических разработок.
		2.Использование воспитательного
		потенциала дисциплин
		профессионального модуля для
		формирования социальной
		ответственности ученого за
		результаты исследований и их
		последствия, развития

	1	
		исследовательских качеств
		посредством выполнения учебно-
		исследовательских заданий,
		ориентированных на изучение и
		проверку научных фактов,
		критический анализ публикаций в
		профессиональной области,
		вовлечения в реальные
		междисциплинарные научно-
		исследовательские проекты.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
293111111111111111111111111111111111111	формирование навыков	профессионального модуля для
	коммуникации, командной	развития навыков коммуникации,
	работы и лидерства (В20)	командной работы и лидерства,
	рассты и лидерства (В20)	творческого инженерного мышления,
		стремления следовать в
		профессиональной деятельности
		нормам поведения, обеспечивающим
		нравственный характер трудовой
		деятельности и неслужебного
		поведения, ответственности за
		принятые решения через подготовку
		групповых курсовых работ и
		практических заданий, решение
		кейсов, прохождение практик и
		подготовку ВКР. 2.Использование
		воспитательного потенциала
		дисциплин профессионального модуля
		для: - формирования
		производственного коллективизма в
		ходе совместного решения как
		модельных, так и практических задач,
		а также путем подкрепление
		рационально-технологических
		навыков взаимодействия в проектной
		деятельности эмоциональным
		эффектом успешного взаимодействия,
		ощущением роста общей
		эффективности при распределении
		проектных задач в соответствии с
		сильными компетентностными и
		эмоциональными свойствами членов
		проектной группы.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	7 Семестр						
1	Тема 1	1-8	0/0/24		25	УО-8	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-2.1, У-ПК-2.1, В-ПК-2.1
2	Тема 2	9-16	0/0/24		25	УО-16	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-2.1, У-ПК-2.1, В-ПК-2.1
	Итого за 7 Семестр		0/0/48		50		
	Контрольные мероприятия за 7 Семестр				50	3	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-2.1, У-ПК-2.1, В-ПК-2.1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
УО	Устный опрос
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	7 Семестр	0	0	48
1-8	Тема 1	0	0	24
1	Введение.	Всего аудиторных час		часов
	Введение. Предмет «Ионная оптика». Ионно-оптические	0	0	3
	системы и их свойства. Фокусировка и разделение ионов,	Онлайн	I	
	аберрационные свойства ионно-оптических систем.	0	0	0
	Электростатика и магнитостатика. Теоремы			
	Остроградского-Гаусса и Остроградского-Стокса.			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

1	Поляризация диэлектриков. Теорема Гаусса. Принцип				
	суперпозиции при расчетах потенциалов. Диэлектрики и				
	проводники в электрическом поле. Энергия				
	электрического поля.				
2	Электри теского поля. Электростатические поля простых геометрических		аудиторі	ных часов	
	форм.	0	0	3	
	Электростатические поля простых геометрических форм.		Онлайн		
	Электрические поля: точечного заряда, плоского	0	0	0	
	конденсатора, длинной заряженной оси, цилиндрического				
	конденсатора, сферического конденсатора, диполя, двух				
	равных одноименных точечных зарядов.				
3	Электрические поля цилиндрического конденсатора	Всего	аудиторі	ных часов	
	Электрические поля цилиндрического конденсатора с	0	0	3	
	двухслойным диэлектриком, параллельных тонких	Онла	йн		
	проводников, параллельных проводящих цилиндров,	0	0	0	
	проводящих цилиндров во внешнем поле, кольцевого				
	заряда, заряженного диска, точечного заряда вблизи				
	проводящей поверхности.				
4	Векторный и скалярный потенциалы магнитного	Всего	аудиторі	ных часов	
	поля.	0	0	3	
	Векторный и скалярный потенциалы магнитного поля.	Онла	йн		
	Магнитное поле на границе двух сред. Магнитное	0	0	0	
	экранирование. Расчет магнитного поля в зазоре магнита.				
	Магнитные поля простых геометрических форм.				
	Магнитное поле бесконечно длинного прямого				
	цилиндрического проводника с током (внутри и снаружи).				
5					
5	Магнитное поле двухпроводной линии в			ных часов	
5	цилиндрическом ферромагнитном экране.	0	0	ных часов	
5	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом	0 Онла	0 йн	3	
5	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле	0	0		
5	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с	0 Онла	0 йн	3	
5	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы.	0 Онла	0 йн	3	
	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов.	0 Онла 0	0 йн 0	0	
6	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция.	0 Онла 0	0 йн 0 э аудиторг	3 0 ных часов	
	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля	0 Онла 0 Всего	0 йн 0 о аудиторі	0	
	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора,	0 Онла 0 Всего 0 Онла	0 йн 0 о аудитори 0	3 0 ных часов 3	
	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты	0 Онла 0 Всего	0 йн 0 о аудиторі	0 ных часов	
	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного	0 Онла 0 Всего 0 Онла	0 йн 0 о аудитори 0	3 0 ных часов 3	
	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на	0 Онла 0 Всего 0 Онла	0 йн 0 о аудитори 0	3 0 ных часов 3	
6	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц.	0 Онла 0 Всего 0 Онла 0	0 йн 0 э аудиторі 0 йн 0	3 0 ных часов 3	
	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях.	0 Онла 0 Всего 0 Онла 0	0 йн 0 о аудитори 0 йн 0	3 0 ных часов 3	
6	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие	0 Онла 0 Всего 0 Онла 0	0 йн 0 о аудиторг 0 йн 0 о аудиторг 0	3 0 ных часов 3	
6	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в	0 Онла 0 Всего 0 Онла 0	0 йн 0 о аудиторі 0 йн 0 о аудиторі 0	3 0 ных часов 3 0 ных часов 3	
6	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление	0 Онла 0 Всего 0 Онла 0	0 йн 0 о аудиторг 0 йн 0 о аудиторг 0	3 0 ных часов 3	
6	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление траекторий. Движение заряженных частиц в однородном	0 Онла 0 Всего 0 Онла 0	0 йн 0 о аудиторі 0 йн 0 о аудиторі 0	3 0 ных часов 3 0 ных часов 3	
7	цилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление траекторий. Движение заряженных частиц в однородном электрическом поле. Движение в полях г-1, г-2.	0 Онла 0 Онла 0 Онла 0 Онла 0	0 йн 0 аудиторі 0 йн 0 аудиторі 0 йн	3	
6	пилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление траекторий. Движение заряженных частиц в однородном электрическом поле. Движение в полях г-1, г-2. Фокусирующие свойства электрических полей.	0 Онла 0 Онла 0 Онла 0 Онла	0 йн 0 о аудитори 0 йн 0 о аудитори 0 йн 0	3 0 ных часов 3 0 ных часов 3 0 ных часов	
7	пилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление траекторий. Движение заряженных частиц в однородном электрическом поле. Движение в полях г-1, г-2. Фокусирующие свойства электрических полей. Основное	0 Онла 0 Онла 0 Онла 0 Онла 0	0 йн 0 о аудитори 0 йн 0 о аудитори 0 йн 0	3 0 0 Hых часов 3 0 0 1 1 1 1 1 1 1	
7	пилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление траекторий. Движение заряженных частиц в однородном электрическом поле. Движение в полях г-1, г-2. Фокусирующие свойства электрических полей. Основное уравнение электронной оптики для аксиально-	0 Онла 0 Онла 0 Онла 0 Всего 0 Онла	0 йн 0 о аудиторі 0 йн 0 о аудиторі 0 аудиторі 0 аудиторі	3 0 0 ных часов 3 0 ных часов 3 0 ных часов 3 3 3 1 1 1 1 1 1 1	
7	пилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление траекторий. Движение заряженных частиц в однородном электрическом поле. Движение в полях г-1, г-2. Фокусирующие свойства электрических полей. Основное уравнение электронной оптики для аксиальносимметричных полей. Фокусировка в аксиально-	0 Онла 0 Онла 0 Онла 0 Онла 0	0 йн 0 о аудитори 0 йн 0 о аудитори 0 йн 0	3 0 ных часов 3 0 ных часов 3 0 ных часов	
7	пилиндрическом ферромагнитном экране. Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране. Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов. Краевые поля и их коррекция. Краевые поля и их коррекция. Краевые поля электростатических систем: плоского конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых полей на фокусировку заряженных частиц. Движение заряженных частиц в полях. Движение заряженных частиц в полях. Общие закономерности движения заряженных частиц в электростатических и магнитных полях. Преломление траекторий. Движение заряженных частиц в однородном электрическом поле. Движение в полях г-1, г-2. Фокусирующие свойства электрических полей. Основное уравнение электронной оптики для аксиально-	0 Онла 0 Онла 0 Онла 0 Всего 0 Онла	0 йн 0 о аудиторі 0 йн 0 о аудиторі 0 аудиторі 0 аудиторі	3 0 0 ных часов 3 0 ных часов 3 0 ных часов 3 3 3	

9-16	Тема 2	0	0	24	
9	Электронный умножитель и электронный	Всего	аудиторн	ых часов	
	осциллограф	0	0	3	
	Электронный умножитель и электронный осциллограф.	Онлай	, IH		
	Электростатические линзы. Примеры электростатических	0	0	0	
	линз. Аберрации электростатических линз. Движение				
	заряженных частиц в однородном магнитном поле.				
	Движение заряженных частиц в радиальном магнитном				
	поле.				
10	Фокусировка в поперечных и продольных магнитных	Всего	аудиторн	ых часов	
	полях.	0	0	3	
	Фокусировка в поперечных и продольных магнитных	Онлай	, IH		
	полях. Короткая магнитная линза. Дисперсия по массам в	0	0	0	
	магнитных полях. Фокусировка в секторных полях.				
	Аберрации, идеальная фокусировка.				
11	Влияние объемного заряда электронных и ионных	Всего	аудиторн	ых часов	
	пучков.	0	0	3	
	Влияние объемного заряда электронных и ионных пучков.	Онлай	iH	•	
	Движение заряженных частиц с учетом влияния	0	0	0	
	объемного заряда. Формирование пучков заряженных				
	частиц. Закон "трех/вторых". Учет начальных скоростей				
	частиц.				
12	Пирсова оптика.	Всего	аудиторн	ых часов	
	Пирсова оптика. Изменение формы клиновидных и	0	0	3	
	аксиально-симметричных пучков под воздействием	Онлай	iH		
	собственного объемного заряда.	0	0	0	
13	Программные пакеты SIMION-7 и MathLab-5	Всего	аудиторн		
	Программные пакеты SIMION-7 и MathLab-5 и их использование при моделировании свойств		0 0 3		
			H H		
	ионно0оптических систем. Возможности и ограничения	0	0	0	
	программных пакетов. Расчет полей с помощью				
	программных пакетов.				
14	Создание компьютерных моделей ионно-оптических	Всего	аудиторн	ых часов	
	систем.	0	0	3	
	Создание компьютерных моделей ионно-оптических	Онлай	iH		
	систем. Аксиально-симметричные электродные системы.	0	0	0	
	Электродные системы с планарной геометрией				
	Компьютерные модели сеточных систем с «идеальными»				
	и реальными сеточными электродами.				
15	Сложные электродные объекты.	Всего	аудиторн	ых часов	
	Сложные электродные объекты. Комбинирование	0	0	3	
	электродных систем из объектов с простыми формами.	Онлай	ÍH	I	
	Использование объектов с разными видами симметрии	0	0	0	
	при построении объектов сложной формы.				
16	Моделирование траекторий заряженных частиц в	Всего	аудиторн	ых часов	
	ионно-оптических системах.	0	0	3	
	Моделирование траекторий заряженных частиц в ионно-	Онлай			
	оптических системах. Выбор параметров моделирования.	0	0	0	
	UITINGCERIA CHETEMAA. DBIOOD HADAMETIOB MOJEJINIOBARIA.				
	Моделирование работы времяпролетных анализаторов. Обработка результатов моделирования времяпролетных				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование	
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание		
	7 Семестр		
1	Введение.		
	Введение. Предмет «Ионная оптика». Ионно-оптические системы и их свойства.		
	Фокусировка и разделение ионов, аберрационные свойства ионно-оптических систем.		
	Электростатика и магнитостатика. Теоремы Остроградского-Гаусса и		
	Остроградского-Стокса. Поляризация диэлектриков. Теорема Гаусса. Принцип		
	суперпозиции при расчетах потенциалов. Диэлектрики и проводники в электрическом		
	поле. Энергия электрического поля.		
2	Электростатические поля простых геометрических форм.		
	Электростатические поля простых геометрических форм. Электрические поля:		
	точечного заряда, плоского конденсатора, длинной заряженной оси, цилиндрического		
	конденсатора, сферического конденсатора, диполя, двух равных одноименных		
	точечных зарядов.		
3	Электрические поля цилиндрического конденсатора		
	Электрические поля цилиндрического конденсатора с двухслойным диэлектриком,		
	параллельных тонких проводников, параллельных проводящих цилиндров,		
	проводящих цилиндров во внешнем поле, кольцевого заряда, заряженного диска,		
	точечного заряда вблизи проводящей поверхности.		
4	Векторный и скалярный потенциалы магнитного поля.		
	Векторный и скалярный потенциалы магнитного поля. Магнитное поле на границе		
	двух сред. Магнитное экранирование. Расчет магнитного поля в зазоре магнита.		
	Магнитные поля простых геометрических форм. Магнитное поле бесконечно		
	длинного прямого цилиндрического проводника с током (внутри и снаружи).		
5	Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном		
	экране.		
	Магнитное поле двухпроводной линии в цилиндрическом ферромагнитном экране.		
	Поле кругового тока, поле соленоида. Поле цилиндрического электромагнита с		
	воздушным зазором. Поле в зазоре клиновидной формы. Поле в зазоре двух конусов.		
6	Краевые поля и их коррекция.		
	Краевые поля и их коррекция. Краевые поля электростатических систем: плоского		
	конденсатора, цилиндрического конденсатора. Линзовые эффекты сеточных		
	электродов. Краевое поле плоскопараллельного магнитного зазора. Влияние краевых		
7	полей на фокусировку заряженных частиц.		
7	Движение заряженных частиц в полях.		
	Движение заряженных частиц в полях. Общие закономерности движения заряженных		
	частиц в электростатических и магнитных полях. Преломление траекторий. Движение		

	заряженных частиц в однородном электрическом поле. Движение в полях r-1, r-2.
8	Фокусирующие свойства электрических полей.
	Фокусирующие свойства электрических полей. Основное уравнение электронной
	оптики для аксиально-симметричных полей. Фокусировка в аксиально-симметричном
	поле. Тонкая линза. Практическое использование фокусировки заряженных частиц.
9	Электронный умножитель и электронный осциллограф
	Электронный умножитель и электронный осциллограф. Электростатические линзы.
	Примеры электростатических линз. Аберрации электростатических линз. Движение
	заряженных частиц в однородном магнитном поле. Движение заряженных частиц в
	радиальном магнитном поле.
10	Фокусировка в поперечных и продольных магнитных полях.
	Фокусировка в поперечных и продольных магнитных полях. Короткая магнитная
	линза. Дисперсия по массам в магнитных полях. Фокусировка в секторных полях.
	Аберрации, идеальная фокусировка.
11	Влияние объемного заряда электронных и ионных пучков.
	Влияние объемного заряда электронных и ионных пучков. Движение заряженных
	частиц с учетом влияния объемного заряда. Формирование пучков заряженных
	частиц. Закон "трех/вторых". Учет начальных скоростей частиц.
12	Пирсова оптика.
	Пирсова оптика. Изменение формы клиновидных и аксиально-симметричных пучков
	под воздействием собственного объемного заряда.
13	Программные пакеты SIMION-7 и MathLab-5
	Программные пакеты SIMION-7 и MathLab-5 и их использование при моделировании
	свойств ионно0оптических систем. Возможности и ограничения программных
	пакетов. Расчет полей с помощью программных пакетов.
14	Создание компьютерных моделей ионно-оптических систем.
	Создание компьютерных моделей ионно-оптических систем. Аксиально-
	симметричные электродные системы. Электродные системы с планарной геометрией
	Компьютерные модели сеточных систем с «идеальными» и реальными сеточными
	электродами.
15	Сложные электродные объекты.
	Сложные электродные объекты. Комбинирование электродных систем из объектов с
	простыми формами. Использование объектов с разными видами симметрии при
	построении объектов сложной формы.
16	Моделирование траекторий заряженных частиц в ионно-оптических системах.
	Моделирование траекторий заряженных частиц в ионно-оптических системах. Выбор
	параметров моделирования. Моделирование работы времяпролетных анализаторов.
	Обработка результатов моделирования времяпролетных анализаторов.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Курс реализует компетентностный подход и предусматривает широкое использование в учебном процессе активных форм проведения занятий (компьютерные практикумы, разбор домашних заданий, система контрольно-измерительных материалов, включая тесты) а также, проведение занятий в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-1	3-ПК-1	3, УО-8, УО-16
	У-ПК-1	3, УО-8, УО-16
	В-ПК-1	3, УО-8, УО-16
ПК-2.1	3-ПК-2.1	3, УО-8, УО-16
	У-ПК-2.1	3, УО-8, УО-16
	В-ПК-2.1	3, УО-8, УО-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	•	С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится

	студентам, которые не могут продолжить обучение без дополнительных занятий по
	соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ С23 Сборник задач по физической электронике и физике плазмы : учебное пособие для вузов, Фетисов И.К. [и др.], Москва: МИФИ, 2008
- 2. 543 С56 Современные методы масс-спектрометрии : лабораторный практикум, Фролов А.С. [и др.], Москва: МИФИ, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 621.38 В14 Вакуумная электроника Ч.1, , : МГТУ, 2008
- 2. 537 Э17 Физические принципы электронной микроскопии. Введение в просвечивающую, растровую и аналитическую электронную микроскопию : , Эгертон Р.Ф., Москва: Техносфера, 2010

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Данный курс предназначен для студентов бакалавриата. Для успешного обучения по данной дисциплине студент должен знать: основные понятия общей и статистической физики, а также знать основы математического, векторного и тензорного анализа. Курс разбит на 2 раздела.

Текущий контроль представлен следующим видом аттестации:

– Устный опрос.

На выбор преподавателя студенту выдается 2 вопроса из перечисленного ниже списка вопросов. Время на подготовку — не более 40 минут. В рамках предложенных тем вопросов, преподаватель может задавать обобщающие вопросы, охватывающие несколько тем, или конкретные задачи-проблемы группе (два и более) студентов с целью оценить работу студентов в коллективе, а так же роль и активность отдельных студентов.

Методика проведения оценивания студентов на рубежном контроле основывается на Устном опросе. В рамках данной методики, оценка в баллах выставляется студенту на основании результатов Текущего контроля отдельно для первой половины семестра и отдельно для второй. Успешное прохождение студентом рубежного контроля отвечает диапазону 15-25 баллов по итогам каждого УО.

Форма реализации промежуточного контроля - зачет. К зачету допускаются студенты, имеющие по итогам и в сумме не менее 30 баллов. Максимальная оценка на зачете составляет 50 баллов.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Необходимо дать возможность студентам усвоить сущность дисциплины, заключающуюся в освоении принципов построения ионно оптических систем масс-спектральных приборов и установок, а также оптимизации их ионно-оптических свойств. Объяснить основные компоненты и этапы, на которые следует обратить особое внимание, при создании конструкций полезадающих систем ионных и электронных приборов. Кроме этого, важно четко показать студентам на практическом примере основные навыки для получения оптимальных ионно-оптических характеристик.

Автор(ы):

Сысоев Александр Алексеевич, д.ф.-м.н., профессор

Рецензент(ы):

Иванов В.П.