Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ МИКРО- И НАНОСИСТЕМ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 03/3-21

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

НАНООПТИКА И НАНОМАТЕРИАЛЫ

Направление подготовки (специальность)

[1] 12.04.03 Фотоника и оптоинформатика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
3	2	72	4	44	0		24	0	3
Итого	2	72	4	44	0	0	24	0	

АННОТАЦИЯ

В курсе изучаются современные направления развития нанооптики и нанофотоники. Обсуждаются вопросы построения элементной базы современных оптоэлектронных устройств. Отдельное внимание уделяется используемым материалам и технологиям.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Дать студентам представление о современных тенденциях развития оптоэлектронных устройств, областях их применения и используемых для их создания технологиях.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Профессиональный модуль, дисциплина по выбору

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции ОПК-1 [1] – Способен представлять современную научную картину мира, выявлять естественно-научную сущность проблемы, формулировать задачи, определять пути их решения и оценивать эффективность выбора и методов правовой защиты результатов интеллектуальной деятельности с учетом специфики исследований и разработки приборов и систем, технологий производства оптических сред, материалов и устройств фотоники и оптоинформатики ОПК-3 [1] – Способен приобретать и использовать новые знания в своей предметной области на основе информационных систем и технологий, предлагать новые идеи и подходы к решению инженерных задач

3-ОПК-1 [1] — Знать современное состояние развития исследований и разработок приборов и систем, технологий производства оптических сред, материалов и устройств фотоники и оптоинформатики У-ОПК-1 [1] — Уметь выявлять естественнонаучную сущность проблемы, формулировать задачи, определять пути их решения в области фотоники и оптоинформатики В-ОПК-1 [1] — Владеть: приемами оценки эффективности выбранного решения с учетом специфики исследований и разработки приборов и систем, технологий производства оптических сред, материалов и устройств фотоники и оптоинформатики

Код и наименование индикатора достижения компетенции

3-ОПК-3 [1] — Знать основы информационных технологий У-ОПК-3 [1] — Уметь приобретать и использовать новые знания в своей предметной области; предлагать новые идеи и подходы к решению инженерных задач В-ОПК-3 [1] — Владеть навыками решения профессиональных задач с использованием информационных систем и технологий

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или область	Кол и наименование	Код и наименование	ı
ј Јада та	I OODCKI HJIH OOJIACID		I IVOZ II HAMMCHODANIC	

профессиональной деятельности (ЗПД)	знания	профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	индикатора достижения профессиональной компетенции
выбор оптимального метода и разработка программ экспериментальных исследований и измерений с выбором технических средств и обработкой результатов	раучно-исследовательски фундаментальные и прикладные научно-исследовательские разработки в области фотоники и оптоинформатики	пк-3 [1] - способен разрабатывать фотонное устройство на основе элементной базы, выбирать необходимое оборудование и способ контроля параметров устройства Основание: Профессиональный стандарт: 40.011	3-ПК-3[1] - Знать: элементную базу и устройства фотоники; У-ПК-3[1] - Уметь: приобретать и использовать новые знания в своей предметной области; предлагать новые идеи и подходы к решению инженерных задач в своей предметной области; В-ПК-3[1] - Владеть: основными методами и способами контроля параметров устройств фотоники

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	3 Семестр						
1	Первый раздел	1-8	2/22/0		25	КИ-8	3- ОПК- 1, У- ОПК- 1, В- ОПК- 1, 3- ОПК- 3,

						У- ОПК- 3, В- ОПК- 3
2	Второй раздел	9-16	2/22/0	25	КИ-16	3-ПК- 3, У- ПК-3, В- ПК-3
	Итого за 3 Семестр		4/44/0	50		
	Контрольные мероприятия за 3 Семестр			50	3	3- ОПК- 1, У- ОПК- 1, В- ОПК- 3, У- ОПК- 3, В- ОПК- 3, 3-ПК- 3, У- ПК-3, В-

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование		
чение			
КИ	Контроль по итогам		
3	Зачет		

КАЛЕНДАРНЫЙ ПЛАН

^{** -} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,	
И		час.	, час.	час.	
	3 Семестр	4	44	0	
1-8	Первый раздел	2	22	0	
1 - 4	Тема 1	Всего а	аудиторных	часов	
	Полупроводниковые и металлические наноструктуры:	1	11	0	
	строение, методы получения, фотофизические свойства.	Онлайі	H		
	Микро- и наноструктуры для управления оптическим	0	0	0	
	излучением: микрорезонаторы, фотонные кристаллы.				
5 - 8	Тема 2	Всего а	аудиторных	часов	
	Источники излучения на основе наноструктур. Светодиоды	1	11	0	
	и лазеры на базе классических полупроводниковых	Онлайі	H		
	наногетероструктур.	0	0	0	
	Гибридные наноструктуры на основе органических				
	полупроводников и коллоидных наночастиц. Источники				
	однофотонного излучения. Области применения и				
	перспективы развития				
9-16	Второй раздел	2	22	0	
9 - 12	Тема 3		Всего аудиторных часов		
	Детекторы оптического излучения и фотовольтаические	1	11	0	
	устройства на базе наноструктур. Основные	Онлайі	H		
	характеристики полупроводниковых фотодетекторов.	0	0	0	
	Использование наногетероструктур для создания				
	детекторов ИК диапазона, лавинных фотодиодов и				
	детекторов одиночных фотонов.				
	Современные направления развития солнечных ячеек.				
	Мульти-инжекционные солнечные ячейки, солнечные				
	ячейки грецеля, солнечные ячейки с объемным				
	гетеропереходом. Преимущества и недостатки различных				
	подходов. Перспективы развития				
13 - 16	Тема 4	Всего а	аудиторных	часов	
	Оптическая микроскопия за дифракционным пределом.	1	11	0	
	Классическая оптическая микроскопия: методы и области	Онлайі	H		
	применения. Предел оптического разрешения.	0	0	0	
	Ближнепольная оптическая микроскопия. Методики STED				
	иPALM				

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
	3 Семестр
1 - 4	Тема 1
	Полупроводниковые и металлические наноструктуры:
	строение, методы получения, фотофизические свойства.
	Микро- и наноструктуры для управления оптическим
	излучением: микрорезонаторы, фотонные кристаллы.
5 - 8	Тема 2
	Источники излучения на основе наноструктур.
	Светодиоды и лазеры на базе классических
	полупроводниковых наногетероструктур.
	Гибридные наноструктуры на основе органических
	полупроводников и коллоидных наночастиц. Источники
	однофотонного излучения. Области применения и
	перспективы развития
9 - 12	Тема 3
	Детекторы оптического излучения и фотовольтаические
	устройства на базе наноструктур. Основные
	характеристики полупроводниковых фотодетекторов.
	Использование наногетероструктур для создания
	детекторов ИК диапазона, лавинных фотодиодов и
	детекторов одиночных фотонов.
	Современные направления развития солнечных ячеек.
	Мульти-инжекционные солнечные ячейки, солнечные
	ячейки грецеля, солнечные ячейки с объемным
	гетеропереходом. Преимущества и недостатки различных
	подходов. Перспективы развития
13 - 16	Тема 4
	Оптическая микроскопия за дифракционным пределом.
	Классическая оптическая микроскопия: методы и области
	применения. Предел оптического разрешения.
	Ближнепольная оптическая микроскопия. Методики STED
	и PALM

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При проведении лекций используются наглядные формы демонстрации учебного материала в виде презентаций, а также выступление приглашенных сотрудников кафедры "Физики микро- и наносистем" и других подразделений НИЯУ МИФИ, занимающихся исследованиями в области полупроводниковых наноструктур и фотоники. Студенты в обязательном порядке посещают лекции ведущих мировых ученых, выступающих в НИЯУ МИФИ с лекциями на тему лазерной физики, фотоники, нанофотоники и наноэлектроники. Проведение семинаров предусматривает проведение дискуссий и выступления студентов с докладами.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ОПК-1	3-ОПК-1	3, КИ-8
	У-ОПК-1	3, КИ-8
	В-ОПК-1	3, КИ-8
ОПК-3	3-ОПК-3	3, КИ-8
	У-ОПК-3	3, КИ-8
	В-ОПК-3	3, КИ-8
ПК-3	3-ПК-3	3, КИ-16
	У-ПК-3	3, КИ-16
	В-ПК-3	3, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
			Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
90-100	5 – «отлично»	A	четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
	<i>4 − «хорошо»</i>		материал, грамотно и по существу
70-74	1 «Copoulon		излагает его, не допуская
70-74		D	существенных неточностей в ответе
		1	на вопрос.
65-69			Оценка «удовлетворительно»
			выставляется студенту, если он имеет
			знания только основного материала,
	3 –		но не усвоил его деталей, допускает
60-64	«удовлетворительно»	E	неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 –	F	Оценка «неудовлетворительно»

«неудовлетворительно»	выставляется	студенту, который не
	знает значите	ельной части
	программног	о материала, допускает
	существенны	е ошибки. Как правило,
	оценка «неуд	овлетворительно»
	ставится студ	центам, которые не могут
	продолжить	обучение без
	дополнитель	ных занятий по
	соответствую	ощей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 535 С16 Оптика и фотоника. Принципы и применения Т.1, Долгопрудный: Интеллект, 2012
- 2. 535 С16 Оптика и фотоника. Принципы и применения Т.2, Долгопрудный: Интеллект, 2012
- 3. ЭИ К 90 Современная оптика и фотоника нано- и микросистем : , Москва: Физматлит, 2016

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1. Демонстрационный проектор (Э-207)

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Обучающийся, для успешного освоения данного курса, должен знать:

- высшую математику в соответствии с основными разделами курса высшей математики в университетском объеме;
- разделы курса теоретической физики в части квантовой механики, статистической физики;
 - физическую оптику;
 - физику твердого тела;
 - основы физики лазеров

При освоении материала следует уделить особое внимание практическим расчетам. Допускается использование справочных материалов и интернет-ресурсов, необходимых для проведения численных расчетов.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Курс состоит из четырех больших тем. Первая тема посвящена изучению фотофизических свойств полупроводниковых и металлических наноструктур, а также структур по управлению оптическим излучением на базе фотонных кристаллов и микрорезонаторов. При изучении этой темы следует подробно остановиться на следующих понятиях: эффект размерного квантования, плазмонный резонанс, дисперсионная зависимость, фотонная запрещенная зона, плотность состояний.

Вторая тема посвящена источникам оптического излучения на основе полупроводниковых наногетероструктур и гибридных структур с применением органических полупроводников и коллоидных наночастиц. В первой части темы следует уделить особое внимание преимуществам использования наногетероструктур ДЛЯ пространственной локализации носителей тока и электромагнитного излучения. Подробно рассмотреть вопрос встраивания в наногетероструктуру высокоэффективных брэгговских зеркал и модуляторов типа SESAM зеркала. Во второй части темы следует обратить внимание на технологические преимущества использования органических полупроводников и коллоидных наночастиц при создании светоизлучающих устройств для широкого коммерческого рынка.

Третья тема посвящена фотодетекторам и фотовольтаическим устройствам на базе наноструктур. При обсуждении фотодекторов следует четко разобраться в их ключевых характеристиках и уяснить области применения устройств различного типа. Важным объектом обсуждения должны стать лавинные фотодиоды и детекторы одиночных фотонов.

Четвертая тема посвящена современной оптической микроскопии с разрешением выше дифракционного предела. При рассмотрении данной темы следует уделить особое внимание преимуществам использования оптической микроскопии по сравнению с другими методами изучения структуры наносистем, например, электронной микроскопии или малоугловому рентгеновскому рассеянию.

Обучающийся, для успешного освоения данного курса, должен знать:

- высшую математику в соответствии с основными разделами курса высшей математики в университетском объеме;
- разделы курса теоретической физики в части квантовой механики, статистической физики;
 - физическую оптику;
 - физику твердого тела;
 - основы физики лазеров

Лекции должны сопровождаться наглядным иллюстративным материалом, в частности, с использованием компьютерных технологий. Следует уделить особое внимание практическим расчетам, выполняемым самими студентами при работе над текущими заданиями. Допускается использование студентами справочных материалов и интернет-ресурсов, необходимых для проведения численных расчетов. Периодически на практических занятиях следует предлагать студентам сделать доклад по материалам публикаций в одном из тематических научных журналов.

Текущий контроль успеваемости осуществляется путем тестирования, которое проводится 2 раза в семестр. Ответы на вопросы для текущего контроля должны показывать уверенное владение материалом из соответствующей темы. В зависимости от характера вопроса - знание физического обоснования, необходимых количественных характеристик, владение оценочными соотношениями, схемами экспериментальных установок. Процент верных ответов дает баллы для рубежного контроля (КИ-8, КИ-16) и допуск к зачету.

Автор(ы):

Мартынов Игорь Леонидович, к.ф.-м.н.