Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ТВЕРДОГО ТЕЛА И НАНОСИСТЕМ

ОДОБРЕНО НТС ЛАПЛАЗ

Протокол № 3

от 30.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЭКСПЕРИМЕНТАЛЬНАЯ ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ ВЕЩЕСТВА

Направление подготовки (специальность)

[1] 03.04.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2	1	36	15	15	0		6	0	3
Итого	1	36	15	15	0	0	6	0	

АННОТАЦИЯ

В курсе изучаются современные понятия, законы, теории, экспериментальные методы физики конденсированного состояния вещества, даются результаты измерений в области физики взаимодействия излучения оптического диапазона с веществом в конденсированном состоянии.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Данная дисциплина является одной из основных при подготовке по профилю физики твердого тела.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Курс опирается на материал следующих дисциплин, читаемых студентам физикоматематических специальностей: уравнения математической физики, квантовая механика, макроэлектродинамика, теория вероятностей, статистическая физика и термодинамика.

Для успешного освоения дисциплины необходимы знания по курсам общей физики и университетскому курсу математики. Необходимо знать дифференциальное и интегральное исчисление, тензорный и векторный анализ, статистику и термодинамику, электричество и магнетизм, в том числе в материальных средах. Необходимо ориентироваться в задачах квантовой механики и статистической физики и пользоваться соответствующими формулами.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

УК-4 [1] — Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия

Код и наименование компетенции

Код и наименование индикатора достижения компетенции

3-УК-4 [1] — Знать: правила и закономерности личной и деловой устной и письменной коммуникации; современные коммуникативные технологии на русском и иностранном языках; существующие профессиональные сообщества для профессионального взаимодействия У-УК-4 [1] — Уметь: применять на практике коммуникативные технологии, методы и способы делового общения для академического и профессионального взаимодействия В-УК-4 [1] — Владеть: методикой межличностного делового общения на русском и иностранном языках, с применением профессиональных языковых форм, средств и современных коммуникативных технологий

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
Н	аучно-исследовательск		
участие в проведении теоретических исследований, построении физических, математических и компьютерных моделей изучаемых процессов и явлений, в проведении аналитических исследований в предметной области по профилю специализации; участие в обобщении полученных данных, формировании выводов, в подготовке научных и аналитических отчетов, публикаций и презентаций результатов научных и аналитических исследований; участие в разработке новых алгоритмов и компьютерных программ для научноиследовательских и прикладных целей; выбор методов и подходов к решению поставленной научной проблемы, формулировка математические и численные расчеты;	природные и социальные явления и процессы, объекты техники, технологии и производства, модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социально-экономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса.	ПК-1 [1] - Способен самостоятельно и (или) в составе исследовательской группы разрабатывать, исследовать и применять математические модели для качественного и количественного описания явлений и процессов и (или) разработки новых технических средств Основание: Профессиональный стандарт: 40.011	3-ПК-1[1] - Знать основные методы и принципы научных исследований, математического моделирования, основные проблемы профессиональной области, требующие использования современных научных методов исследования для качественного и количественного описания явлений и процессов и (или) разработки новых технических средств.; У-ПК-1[1] - Уметь ставить и решать прикладные исследовательские задачи, оценивать результаты исследований; проводить научные и получать новые научные и прикладные результаты самостоятельно и в составе научного коллектива; В-ПК-1[1] - Владеть навыками выбора и использования математических моделей для научных исследований и (или) разработки новых технических средств самостоятельно и (или) в составе

создание программ и комплексов программ на базе стандартных пакетов для выполнения расчетов в рамках математических моделей, участие в разработке новых алгоритмов и компьютерных программ для научноисследовательских и прикладных целей; изучение и анализ научно-технической информации, отечественного и зарубежного опыта по тематике исследования, сбор и обработка научной и аналитической информации с использованием современных программ, средств и методов вычислительной математики, компьютерных и информационных технологий; подготовка данных для составления обзоров, отчетов и научных публикаций, участие во внедрении результатов исследований и разработок. - квалифицированное

природные и социальные явления и процессы, объекты техники, технологии и производства, модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социальноэкономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса.

ПК-2 [1] - Способен критически оценивать применяемые методики и методы исследования

Основание: Профессиональный стандарт: 06.001 группы.
3-ПК-2[1] - Знать методики оценки и выбора методов исследования.;
У-ПК-2[1] - Уметь критически оценивать применяемые методики и методы исследования;
В-ПК-2[1] - Владеть навыками оценки методов исследования по выбранным критериям.

исследовательской

производственно-технологический

- квалифицированное использование исходных данных, материалов, оборудования, методов математического и физического

природные и социальные явления и процессы, объекты техники, технологии и производства, модели, методы и средства

ПК-9 [1] - Способен проводить математическое и компьютерное моделирование объектов, систем, процессов и явлений в избранной предметной

3-ПК-9[1] - Знать основные методы и принципы математического и компьютерного моделирования объектов, систем, процессов и явлений в

моделирования производственнотехнологических процессов и характеристик наукоемких технических устройств и объектов, включая использование алгоритмов и программ расчета их параметров

фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и сопиальноэкономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и

области

Основание: Профессиональный стандарт: 40.011

избранной предметной области.; У-ПК-9[1] - Уметь применять методы математического и компьютерного моделирования объектов, систем, процессов и явлений в избранной предметной области; В-ПК-9[1] - Владеть навыками математического и компьютерного моделирования объектов, систем, процессов и явлений

экспертно-аналитический

бизнеса.

сбор и обработка научной и аналитической информации с использованием современных программ, средств и методов вычислительной математики, компьютерных и информационных технологий;

природные и социальные явления и процессы, объекты техники, технологии и производства, модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социальноэкономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса.

ПК-10 [1] - Способен к построению аналитических и количественных моделей процессов в природе, технике и обществе и к выбору на их основе путей решения теоретических и практических проблем природного, экологического, техникотехнологического характера

Основание: Профессиональный стандарт: 40.011

3-ПК-10[1] - Знать основные методы построения аналитических и количественных моделей процессов в природе, технике и обществе.; У-ПК-10[1] - Уметь применять методы и принципы построения аналитических и количественных моделей процессов в природе, технике и обществе для решения теоретических и практических проблем природного, экологического, техникотехнологического характера; В-ПК-10[1] - Владеть навыками построения аналитических и количественных моделей процессов в природе, технике и обществе и к выбору на их основе путей

	решения
	теоретических и
	практических
	проблем природного,
	экологического,
	технико-
	технологического
	характера

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
1	2 Семестр Раздел 1	1-8	8/8/0		25	КИ-8	3-ПК-
							1, y- ΠK-1, B- ΠK-1, 3-ΠK-2, y- ΠK-2, 3-ΠK-9, y- ΠK-9, 3-ΠK-10, y- ΠK-10, y- ΠK-10, y- ΠK-10, B- ΠK-10, B- ΠK-10, B- ΠK-10, B- ΠK-10, B- ΠK-10, B- ΠK-10, B- ΠK-10, B- ΠΚ-10, B- ΝΚ-10, B- ΝΚ-10, B- ΝΚ-10, B- ΝΚ-10, B- ΝΚ-10, B- ΝΚ-10, B- ΝΚ-10, NΚ-10, NΚ-10, NΚ-10, NK-10,

						УК-4
2	Раздел 2	9-15	7/7/0	25	КИ-15	У-
						ПК-
						10,
						B-
						ПК-
						10,
						3-УК-
						4,
						у <u>-</u>
						УК-4, В-
						УК-4,
						3-∏K-
						1,
						у ₋
						ПК-1,
						B-
						ПК-1,
						3-ПК-
						2,
						У-
						ПК-2,
						B-
						ПК-2,
						3-ПК-
						9,
						У-
						ПК-9,
						В- ПК-9,
						3-∏K-
						10
	Итого за 2 Семестр		15/15/0	50		10
	Контрольные			50	3	3-ПК-
	мероприятия за 2					1,
	Семестр					У-
						ПК-1,
						B-
						ПК-1,
						3-ПК-
						2,
						У- ПК-2,
						B-
						Б- ПК-2,
						3-ΠK-
						9,
						у. У-
						ПК-9,
						B-
						ПК-9,

			3-ПК-
			10,
			У-
			ПК-
			10,
			B-
			ПК-
			10,
			3-УК-
			4,
			4, У-
			УК-4,
			B-
			УК-4

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	2 Семестр	15	15	0
1-8	Раздел 1	8	8	0
1	Введение.	Всего а	удиторных	часов
	Предмет экспериментальной физики твердого тела (ФТТ).	1	1	0
	Развитие основных представлений ФТТ. Роль ФТТ в	Онлайн	I	
	развитии новейших областей техники, микроэлектроники и	0	0	0
2	оптоэлектроники. Кристаллические и аморфные (некристаллические)	Всего а	⊥ ıудиторных	часов
	твердые тела.	1	0	0
	Трансляционная симметрия, элементарная ячейка. Решетка	Онлайн	ł	
	Браве. Сингонии.	0	0	0
2	Обратная решетка.	Всего а	удиторных	часов
	Зона Бриллюэна. Индексы Миллера	0	1	0
		Онлайн	I	
		0	0	0
3	Экспериментальные методы исследования	Всего а	удиторных	часов
	кристаллической структуры	1	1	0
	Дифракция рентгеновских лучей. Формула Вульфа-Брэгга.	Онлайн	H	
	Уравнение Лауэ.	0	0	0
4	Силы связи в кристаллах.	Всего аудиторных часов		
	Энергия связи. Классификация твердых тел по типу связи	0	1	0

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

		Онлай	 Н	
		0	0	0
4	Дефекты кристаллов.	Всего	аудиторны	
•	Точечные дефекты. Дислокации. Термодинамика дефектов	1	0	0
	то то тые дефекты. Днемокации. Термодинамика дефектов	Онлай	1 *	
		0	0	0
5	Turbeyong p Trong vy Today	+ -	1 *	
3	Диффузия в твердых телах. Механизм диффузии. Влияние температуры на диффузию.	1	аудиторны 0	0
		1	1 0	U
	Основные законы диффузии. Распределение примесей	Онлай		
	диффундирующих в пластину. Методы измерения коэффициента диффузии.	0	0	0
5	Колебания решетки-фононы.	Всего	⊥ аудиторны	V Hacob
3	Экспериментальные методы исследования. Неупругое	0	аудиторны 1	0
	рассеяние рентгеновских лучей и нейтронов. Метод трех		1	0
		Онлай	1	
	кристаллов.	0	0	0
6	Модели колебаний линейных цепочек (одно - и		аудиторны	
	двухатомных).	0	1	0
	Акустическая и оптическая ветви колебаний. Локальные	Онлай	1	T -
	колебания.	0	0	0
6	Теплоемкость решетки.	Всего	аудиторны	х часов
	Дебаевская частота. Ангармонизм и тепловое расширение.	1	0	0
	Теплопроводность. Экспериментальные методы.	Онлай	Н	
		0	0	0
7	Энергетический спектр кристаллов.	Всего	аудиторны	х часов
	Уравнение Шредингера и его анализ. Модель Кронига-	1	1	0
	Пенни. Энергетические зоны. Эффективная масса	Онлай	Н	
	электронов. Понятие дырки. Экспериментальные методы	0	0	0
	определения эффективной массы. Метод циклотронного			
	резонанса.			
8	Движение электрона во внешних полях.	Всего	аудиторны	х часов
	Приближение эффективной массы. Примесные атомы.	1	0	0
	Доноры и акцепторы. Экситоны. Энергетический спектр	Онлай	Н	
	водородоподобных примесей и экситонов. Особенности	0	0	0
	энергетического спектра конкретных полупроводников -			
	германия, кремния, соединений III-V, II-V, IV-VI.			
8	Статистика электронов и дырок.	Всего	аудиторны	х часов
	Распределение Ферми-Дирака для электронов. Плотность	0	1	0
	состояний. Число носителей. Вырожденный электронный	Онлай	Н	'
	(дырочный) газ. Электронная теплоемкость.	0	0	0
	Электронейтральность. Уровень Ферми. Собственный и			
	примесный полупроводник. Температурная зависимость			
	концентрации носителей. Экспериментальные методы			
	определения ширины запрещенной зоны и энергии			
	ионизации примесей. Сильнолегированные			
	полупроводники.			
0.15	Раздел 2	7	7	0
9-15	I ASACII 2		1	
9-15 9		Всего	аудиторны	х часов
	Неравновесные электроны и дырки.	Всего з	аудиторны 0	
	Неравновесные электроны и дырки. Квазиуровень Ферми. Фотопроводимость. Рекомбинация	1	0	х часов
	Неравновесные электроны и дырки.	Всего з 1 Онлай	0	

			1.4	Τ.
	жизни, длины диффузии и подвижности неосновных	0	1	0
	носителей	Онлай		1
	Амбиполярный коэффициент диффузии, Фотомагнитный	0	0	0
	эффект.			
10	Р-п переход.	Всего а	аудиторных	х часов
	Область объемного заряда. Выпрямление. Вольтамперная	1	1	0
	характеристика. Фотодиод. Принцип работы транзистора.	Онлайі	H	
		0	0	0
11	Кинетическое уравнение.	Всего	аудиторных	
-	Электропроводность, время релаксации. Механизмы	1	0	0
	рассеяния. Температурная зависимость подвижности.	Онлай	1 0	1 ~
	Экспериментальные методы исследования.	0	0	0
11	Эффект Холла.	+ *	1 *	
11	Эффект Холла для смешанной проводимости. Квантовый	0	аудиторных Г 1	0
			<u> </u>	U
	эффект Холла. Экспериментальные методы измерения на	Онлай	1	
	постоянном и переменном токе. Определение	0	0	0
12	концентрации носителей.	D		
12	Сопротивление в магнитном поле.	Всего а	аудиторных	
	Осцилляции магнитосопротивления в квантующих	<u>l</u>	1	0
	магнитных полях. Эффект Шубникова-де-Гааза как метод	Онлай		1
	исследования поверхности Ферми металлов,	0	0	0
	полупроводников.			
13	Термоэлектрические явления.		аудиторных	х часов
	Термоэдс. Эффект Пельтье и Томсона. Термоохлаждение.	0	1	0
		Онлай	Н	
		0	0	0
13	Электропроводность в сильных электрических полях.	Всего а	аудиторных	х часов
	Отклонение от закона Ома. Подвижность и разогрев	1	0	0
	носителей. Доменная неустойчивость. Эффект Ганна.	Онлай	1 *	1 -
	Генерация электромагнитных колебаний.	0	0	0
14	Ударная ионизация.	+ -	то аудиторных	
1-7	Лавинный пробой. Лавинный и туннельный пробой p-n	1	аудиторны <i>л</i> 0	0
	перехода. Стабилитрон и туннельный диод.			Į U
	перехода. Стаоилитрон и туннельный диод.	Онлай	1	
1.4		0	0	0
14	Оптические свойства твердых тел.		аудиторных	
	Основные соотношения между оптическими	0	1	0
	характеристиками. Механизмы поглощения и излучения.	Онлай	H	
		0	0	0
15	Поглощение свободными носителями.	Всего а	аудиторных	х часов
	Межзонное (фундаментальное) поглощение и излучение.	1	0	0
	Частотная зависимость. Спектр. Экспериментальные	Онлайі	H	
	методы исследования.	0	0	0
15	Оптические переходы через примесные и экситонные	+ -	т <u> </u>	
	состояния.	0	1	0
	Взаимодействие света с колебаниями решетки. Одно- и	Онлай	<u>т</u>	
	многофонные процессы. Комбинационное рассеяние.	Онлаи	0	0
	Экспериментальные методы.	0	0	0
	экспериментальные методы.			

Сокращенные наименования онлайн опций:

Обозна	Полное наименование

чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия с использованием компьютерных технологий и самостоятельная работа студентов, заключающаяся в выполнении домашнего задания, изучении литературы и прослушанного материала. Для того чтобы дать современное состояние экспериментальной физики конденсированного состояния вещества, предусмотрено широкое использование современных научных работ и публикаций по данной теме, посещение лабораторий НИЯУ МИФИ. Рекомендуется посещение студентами научных семинаров и конференций, в том числе, проводимых в НИЯУ МИФИ, а также в других московских университетах и институтах.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие (КП 1)
ПК-1	3-ПК-1	3, КИ-8, КИ-15
	У-ПК-1	3, КИ-8, КИ-15
	В-ПК-1	3, КИ-8, КИ-15
ПК-10	3-ПК-10	3, КИ-8, КИ-15
	У-ПК-10	3, КИ-8, КИ-15
	В-ПК-10	3, КИ-8, КИ-15
ПК-2	3-ПК-2	3, КИ-8, КИ-15
	У-ПК-2	3, КИ-8, КИ-15
	В-ПК-2	3, КИ-8, КИ-15
ПК-9	3-ПК-9	3, КИ-8, КИ-15
	У-ПК-9	3, КИ-8, КИ-15
	В-ПК-9	3, КИ-8, КИ-15
УК-4	3-УК-4	3, КИ-8, КИ-15
	У-УК-4	3, КИ-8, КИ-15
	В-УК-4	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100		A	Оценка «отлично» выставляется
			студенту, если он глубоко и прочно
			усвоил программный материал,
	5 — «отлично»		исчерпывающе, последовательно,
			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
70-74	1 ((xanaua))	D	материал, грамотно и по существу
	4 – «хорошо»		излагает его, не допуская
			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
			выставляется студенту, если он имеет
60-64	3 — «удовлетворительно»	Е	знания только основного материала,
			но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ А 71 Введение в теорию полупроводников: , Санкт-Петербург: Лань, 2022
- 2. ЭИ Ш 18 Физика полупроводников: учебное пособие, Санкт-Петербург: Лань, 2022

- 3. 539.2 А98 Физика твердого тела Т.1, М.: Мир, 1979
- 4. 539.2 К45 Введение в физику твердого тела:, Ч. Киттель, М.: МедиаСтар, 2006

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Б 87 Квазичастицы в физике конденсированного состояния : учебное пособие, Москва: Физматлит, 2010
- 2. 538.9 К 90 Физика наносистем: , Москва: ФИЗМАТЛИТ®, 2022
- 3. 539.2 К31 Современные проблемы физики твердого тела Ч.1 Целый и дробный квантовые эффекты Холла, , Москва: НИЯУ МИФИ, 2011
- 4. 537 А71 Введение в теорию полупроводников: Учебное пособие для вузов, А. И. Ансельм, Санкт-Петербург [и др.]: Лань, 2008
- 5. 537 Б81 Физика полупроводников : Учеб. пособие для вузов, Бонч-Бруевич В.Л., Калашников С.Г., М.: Наука, 1990
- 6. 621.3 С49 Основы материаловедения и технологии полупроводников : Учеб. пособие для вузов, И. А. Случинская, Москва: МИФИ, 2002
- 7. ЭИ Н63 Сборник задач по курсу "Физика твердого тела": , И. Н. Николаев, А. И. Маймистов, Москва: МИФИ, 2009
- 8. 539.2 М13 Физика твердого тела. Локализованные состояния : , Маделунг О.;Пер.с нем. и англ., М.: Наука, 1985
- 9. 539.2 М13 Теория твердого тела: , О. Маделунг, М.: Наука, 1980

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении дисциплины следует учесть тот факт, что этот курс в первую очередь является фундаментом для изучения дальнейших специализирующих курсов. В связи с этим,

необходимо с особым вниманием отнестись к изучению разделов, посвященных физике полупроводников (зонная теория твердых тел, собственные полупроводники, проводимость в собственных полупроводниках, примесные полупроводники – донорные и акцепторные полупроводники, равновесные концентрации свободных носителей полупроводниках, плотность состояний (уровней) в зоне, уровень Ферми в полупроводниках и закон действующих масс, зависимость концентрации свободных носителей и положения Ферми полупроводниках от температуры, электропроводность невырожденного газа, подвижность носителей заряда и ее зависимость от температуры, собственная и примесная проводимости полупроводников и их температурные зависимости, контактные явления, р-п переход).

Программа курса является довольно насыщенной и поэтому требует постепенного детального изучения. Прежде, чем переходить к детальному изучению названных выше разделов физики полупроводников, необходимо усвоить основные сведения о физике твердого тела, включая строение твердых тел, классификацию кристаллов (металлы, диэлектрики, полупроводники) и виды связей в кристаллах (ионные кристаллы ионная (гетерополярная) связь); атомные кристалл (ковалентная (гомеополярная) связь); металлические кристаллы (металлическая связь); молекулярные кристаллы (водородная связь)). Необходимо четко усвоить понятие «фонон», для чего надо понять рассматриваемое на лекциях описание тепловых свойств твердых тел, понять, какие силы действуют между частицами твердого тела и какими законами описывается их поведение (для этого потребуется вспомнить ряд сведений из общей физики, изученной ранее), четко усвоить квантово-механическое описание фонона. Необходимо осмыслить характер теплового движения в кристаллах, колебания цепочки одинаковых атомов (нормальные колебания решетки, спектр нормальных колебаний) в гармоническом приближении; колебания в цепочке неодинаковых атомов в гармоническом приближении; акустические и оптические колебания решетки; роль ангармонизма).

При изучении теплоемкости твердых тел в моделях Эйнштейна и Дебая, следует уделить внимание основным различиям этих моделей, понять физический смысл температуры Дебая и частоты Дебая. Следует обратить внимание на то, какая из моделей наиболее четко описывает экспериментальные результаты и почему.

Серьёзное внимание необходимо уделить изучению поведения электрона в полупроводниках различных типов, включая примесные и собственные полупроводники, следует обратить внимание на влияние примесей на проводимость полупроводника.

При изучении контактных явлений необходимо детально разобраться в физике контакта металл-полупроводник, p-n перехода в равновесном состоянии, а кроме этого, в физическом описании и прикладном значении выравнивающих свойств p-n перехода.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

При изучении дисциплины следует учесть тот факт, что этот курс в первую очередь является фундаментом для изучения дальнейших специализирующих курсов. В связи с этим, необходимо с особым вниманием отнестись к изучению разделов, посвященных физике полупроводников (зонная теория твердых тел, собственные полупроводники, проводимость в собственных полупроводниках, примесные полупроводники — донорные и акцепторные полупроводники, равновесные концентрации свободных носителей заряда в полупроводниках, плотность состояний (уровней) в зоне, уровень Ферми в полупроводниках и в металлах, закон действующих масс, зависимость концентрации свободных носителей и

положения уровня Ферми полупроводниках от температуры, электропроводность невырожденного газа, подвижность носителей заряда и ее зависимость от температуры, собственная и примесная проводимости полупроводников и их температурные зависимости, контактные явления, p-n переход).

Программа курса является довольно насыщенной и поэтому требует постепенного детального изучения. Прежде, чем переходить к детальному изучению названных выше разделов физики полупроводников, необходимо усвоить основные сведения о физике твердого тела, включая строение твердых тел, классификацию кристаллов (металлы, диэлектрики, полупроводники) и виды связей в кристаллах (ионные кристаллы ионная (гетерополярная) связь); атомные кристалл (ковалентная (гомеополярная) связь); металлические кристаллы (металлическая связь); молекулярные кристаллы (водородная связь)). Необходимо четко усвоить понятие «фонон», для чего надо понять рассматриваемое на лекциях описание тепловых свойств твердых тел, понять, какие силы действуют между частицами твердого тела и какими законами описывается их поведение (для этого потребуется вспомнить ряд сведений из общей физики, изученной ранее), четко усвоить квантово-механическое описание фонона. Необходимо осмыслить характер теплового движения в кристаллах, колебания цепочки одинаковых атомов (нормальные колебания решетки, спектр нормальных колебаний) в гармоническом приближении; колебания в цепочке неодинаковых атомов в гармоническом приближении; акустические и оптические колебания решетки; роль ангармонизма).

При изучении теплоемкости твердых тел в моделях Эйнштейна и Дебая, следует уделить внимание основным различиям этих моделей, понять физический смысл температуры Дебая и частоты Дебая. Следует обратить внимание на то, какая из моделей наиболее четко описывает экспериментальные результаты и почему.

Серьёзное внимание необходимо уделить изучению поведения электрона в полупроводниках различных типов, включая примесные и собственные полупроводники, следует обратить внимание на влияние примесей на проводимость полупроводника.

При изучении контактных явлений необходимо детально разобраться в физике контакта металл-полупроводник, p-n перехода в равновесном состоянии, а кроме этого, в физическом описании и прикладном значении выравнивающих свойств p-n перехода.

Автор(ы):

Карцев Петр Федорович, к.ф.-м.н.

Митягин Юрий Алексеевич, к.ф.-м.н., с.н.с.