Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/0821-573.1

от 31.08.2021 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

КИНЕМАТИЧЕСКИЕ МЕТОДЫ В ФИЗИКЕ ЧАСТИЦ

Направление подготовки (специальность)

[1] 14.03.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	16	16	0		22	0	Э
Итого	3	108	16	16	0	16	22	0	

АННОТАЦИЯ

Курс посвящен кинематическим методам анализа и описания процессов взаимодействия элементарных частиц — методам, широко используемым как в практике современного эксперимента, так и теоретических исследованиях. Большое внимание уделено кинематике процессов рождения и распада тяжелых частиц.

Цель курса: формирование у студентов, специализирующихся в области физики элементарных частиц, основных представлений о кинематике реакций образования и распадов частиц в оптимальной форме для исследований, проводимых на современных ускорителях.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Курс посвящен кинематическим методам анализа и описания процессов взаимодействия элементарных частиц — методам, широко используемым как в практике современного эксперимента, так и теоретических исследованиях. Большое внимание уделено кинематике процессов рождения и распада тяжелых частиц.

Цель курса: формирование у студентов, специализирующихся в области физики элементарных частиц, основных представлений о кинематике реакций образования и распадов частиц в оптимальной форме для исследований, проводимых на современных ускорителях.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплины, необходимые для начала изучения «Кинематических методов в физике частиц»: «Квантовая механика», «Теорию поля». Изучение данного курса необходимо для научной работы в рамках НИРС и, главное, в рамках работы над дипломом.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
--------------------------------	--

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
на	аучно-исследовательс	ский	
Получение новых	Элементарные	ПК-1 [1] - Способен	3-ПК-1[1] - знать
знаний в области	частицы,	использовать научно-	отечественный и
физики элементарных	детекторы	техническую	зарубежный опыт по
частиц и космологии,	элементарных	информацию,	тематике

описание явлений в данной области. Участие в решении задач по физике элементарных частиц и космологии.

частиц, ускорители элементарных частиц (Большой Адронный Коллайдер и др.), нейтрино, экзотические ядра, кварк-глюонная материя, скрытая масса и темная энергия, гравитация с многомерными обобщениями, и космология.

отечественный и зарубежный опыт по тематике исследования, современные компьютерные технологии и информационные ресурсы в своей предметной области

Основание: Профессиональный стандарт: 40.011

исследования, современные компьютерные технологии и информационные ресурсы в своей предметной области,; У-ПК-1[1] - уметь использовать научнотехническую информацию, отечественный и зарубежный опыт по тематике исследования, современные компьютерные технологии и информационные ресурсы в своей предметной области; В-ПК-1[1] - владеть современными компьютерными технологиями и методами использования информационных ресурсов в своей предметной области 3-ПК-3[1] - знать основные физические законы и методы обработки данных; У-ПК-3[1] - уметь работать по заданной методике, составлять описания проводимых исследований и отчеты, подготавливать материалы для научных публикаций; В-ПК-3[1] - владеть навыками проведения физических экспериментов по заданной методике, основами компьютерных и информационных технологий, научной

Получение новых знаний в области физики элементарных частиц и космологии, описание явлений в данной области. Участие в решении задач по физике элементарных частиц и космологии.

Элементарные частицы. детекторы элементарных частиц, ускорители элементарных частиц (Большой Адронный Коллайдер и др.), нейтрино, экзотические ядра, кварк-глюонная материя, скрытая масса и темная энергия, гравитация с многомерными обобщениями, и космология.

ПК-3 [1] - Способен проводить физические эксперименты по заданной методике, составлять описания проводимых исследований, отчетов, анализу результатов и подготовке научных публикаций

Основание: Профессиональный стандарт: 40.011

			терминологией
орган	низационно-управлен	ческий	
Участие в организации	Работа в научной	ПК-11.1 [1] - Способен	3-ПК-11.1[1] - Знать
работы научной	группе, отчеты и	участвовать в научных	физику элементарных
группы.	научные статьи.	исследованиях в	частиц и основные
		области физики	средства и методы
		элементарных частиц и	исследования в данной
		космологии, определять	области.;
		необходимые средства	У-ПК-11.1[1] - Уметь
		и к их использованию	использовать методы
		для решения	детектирования
		поставленных задач	элементарных частиц
			и излучений и
		Основание:	программные средства
		Профессиональный	при решении задач в
		стандарт: 40.011	соответствующей
			области.;
			В-ПК-11.1[1] - Владеть
			методами
			исследования в
			области физики
			элементарных частиц.

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал дисциплин
воспитания		

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	7 Семестр						
1	Часть 1	1-8	8/8/0		25	CK-8	3-ПК- 1, У- ПК-1, В- ПК-1, 3-ПК- 11.1,

						У- ПК- 11.1, В- ПК- 11.1, 3-ПК- 3, У- ПК-3, В- ПК-3
2	Часть 2	9-16	8/8/0	25	КИ-16	В- ПК- 11.1, 3-ПК- 3, у- ПК-3, В- ПК-3, 3-ПК- 1, у- ПК-1, В- ПК-1, 3-ПК- 11.1, у-
	Итого за 7 Семестр		16/16/0	50		
	Контрольные мероприятия за 7 Семестр			50	Э	3-ПК- 3, у- ПК-3, В- ПК-3, 3-ПК- 1, у- ПК-1, В- ПК-1, 3-ПК- 11.1, у- ПК- 11.1, В- ПК-

Г				
П				
- 1				11.1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
СК	Семестровый контроль
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	7 Семестр	16	16	0
1-8	Часть 1	8	8	0
1	Введение	Всего а	удиторных	часов
	Методы и предмет кинематики частиц. Кинематические	1	1	
	переменные в реакциях взаимодействия и распада. Законы	Онлайн	I	
	сохранения энергии и импульса.			
2	Сечение процесса, фазовый объем, вероятность	Всего а	удиторных	часов
	Вероятность распада и сечение процесса. Фазовый объём.	1	1	
	Вычисление двухчастичного и трехчастичного фазового	Онлайн	I	•
	объёма.			
3	Двухчастичные процессы, ч.1	Всего а	удиторных	часов
	Кинематика двухчастичных распадов. Энергетические и	1	1	
	угловые распределение продуктов двухчастичного распада	Онлайн	I	'
	в системе покоя нестабильной частицы.			
4	Двухчастичные процессы, ч.2	Всего аудиторных часов		
	Энергетическое распределение продуктов двухчастичного	1	1	
	распада движущейся частицы.	Онлайн		
5	Двухчастичные процессы, ч.3	Всего а	удиторных	часов
	Угловые распределения вторичных частиц при	1	1	
	двухчастичных распадах на лету. Предельный угол вылета	Онлайн	I	'
	вторичных частиц.			
6	Двухчастичные процессы, ч.4	Всего а	удиторных	часов
	Распределение продуктов двухчастичного распада по	1	1	
	поперечному импульсу.	Онлайн	I	'
7	Двухчастичные процессы, ч.5	Всего а	удиторных	часов
	Кинематика нейтринных пучков. Пучки "меченных"	1	1	
	нейтрино. Спектры мюонов от распадов пионов и каонов	Онлайн	I	
8	Двухчастичные процессы, ч.6	Всего а	 удиторных	часов
	Распады нейтральных частиц на два фотона. Распределение	1	1	

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	по поперечным импульсам в двухчастичных распадах	Онлайі			
	тяжелых частиц и измерение их массы.	01111111			
9-16	Часть 2	8	8	0	
9	Трехчастичные процессы, ч.1	Всего а	цудиторных 1	часов	
	Кинематика трехчастичных распадов. Трехчастичный	1	1		
	распад в системе покоя нестабильной частицы.	Онлайі	H		
	Кинематические переменные и ограничения.				
10	Трехчастичные процессы, ч.2	Всего а	удиторных	часов	
	Распределения по энергиям, углам вылета, эффективным	1	1		
	массам продуктов трехчастичного распада в системе покоя	Онлайі	H		
	нестабильной частицы.				
11	Трехчастичные процессы, ч.3	Всего а	цудиторных	часов	
	Диаграммы Далица. Трехчастичные распады на лету.	1	1		
	Кинематические ограничения на энергию и углы вылета	Онлайі	H	•	
	вторичных частиц при распаде нестабильной частицы на				
	лету.				
12	Трехчастичные процессы, ч.4	Всего а	аудиторных	часов	
	Распределения по поперечному импульсу вторичных	1	1		
	частиц при трехчастичных распадах нестабильной		Онлайн		
	частицы. Взаимосвязь двухчастичных и многочастичных				
	распадов.				
13	Двухчастичное рассеяние, ч.1	Всего а	удиторных	часов	
	Кинематика процессов двухчастичного рассеяния.	1	1		
	Мандельстамовские инвариантные переменные.	Онлайі	H		
	Кинематические ограничения в Ц-системе реакции.				
	Кинематические ограничения на углы вылета и энергию				
1.4	вторичных частиц в Ц-системе.				
14	Двухчастичное рассеяние, ч.2	Всего а	аудиторных	часов	
	Дифференциальные распределения в двухчастичных	1	1		
	упругих и квазиупругих процессах. Квазиупругое	Онлайі	H	1	
	нейтринорождение очарованных барионов. Кинематика				
	процессов образования пар нестабильных частиц в реакции				
15 - 16	е+еаннигиляции и их последующего распада.	Page 6	NATIONIA I	/ H000P	
13 - 10	Множественные процессы Кинематика процессов множественного образования	2	аудиторных 2	Тасов	
	адронов. Кинематические переменные инклюзивных	-	L-		
	реакций. Инклюзивное образование тяжелых частиц с	Онлайі	1		
	последующим двухчастичным распадом.				
	последующим двух частичным распадом.				

Сокращенные наименования онлайн опций:

Обозна	Полное наименование		
чение			
ЭК	Электронный курс		
ПМ	Полнотекстовый материал		
ПЛ	Полнотекстовые лекции		
BM	Видео-материалы		
AM	Аудио-материалы		
Прз	Презентации		
T	Тесты		
ЭСМ	Электронные справочные материалы		

ТЕМЫ СЕМИНАРОВ

Недели	Темы занятий / Содержание		
подели	7 Семестр		
1	Введение		
1	Методы и предмет кинематики частиц. Кинематические		
	переменные в реакциях взаимодействия и распада. Законы		
	сохранения энергии и импульса.		
2			
2	Сечение процесса, фазовый объем, вероятность		
	Вероятность распада и сечение процесса. Фазовый объём. Вычисление двухчастичного и трехчастичного фазового		
	1		
2 0	объёма.		
3 - 8	Двухчастичные процессы		
	Кинематика двухчастичных распадов. Энергетические и		
	угловые распределение продуктов двухчастичного распада		
	в системе покоя нестабильной частицы.		
	Энергетическое распределение продуктов двухчастичного		
	распада движущейся частицы.		
	Угловые распределения вторичных частиц при		
	двухчастичных распадах на лету. Предельный угол вылета		
	вторичных частиц.		
	Распределение продуктов двухчастичного распада по		
	поперечному импульсу.		
	Кинематика нейтринных пучков. Пучки "меченных"		
	нейтрино. Спектры мюонов от распадов пионов и каонов.		
	Распады нейтральных частиц на два фотона.		
	Распределение по поперечным импульсам в		
	двухчастичных распадах тяжелых частиц и измерение их		
	массы.		
9 - 12	Трехчастичные процессы		
	Кинематика трехчастичных распадов. Трехчастичный		
	распад в системе покоя нестабильной частицы.		
	Кинематические переменные и ограничения.		
	Распределения по энергиям, углам вылета, эффективным		
	массам продуктов трехчастичного распада в системе покоя		
	нестабильной частицы.		
	Диаграммы Далица. Трехчастичные распады на лету.		
	Кинематические ограничения на энергию и углы вылета		
	вторичных частиц при распаде нестабильной частицы на		
	лету.		
	Распределения по поперечному импульсу вторичных		
	частиц при трехчастичных распадах нестабильной		
	частицы. Взаимосвязь двухчастичных и многочастичных		
	распадов.		
13 - 14	Двухчастичное рассеяние		
	Кинематика процессов двухчастичного рассеяния.		
	Мандельстамовские инвариантные переменные.		
	Кинематические ограничения в Ц-системе реакции.		
	Кинематические ограничения на углы вылета и энергию		
	вторичных частиц в Ц-системе.		
	1 1		

	Дифференциальные распределения в двухчастичных упругих и квазиупругих процессах. Квазиупругое нейтринорождение очарованных барионов. Кинематика процессов образования пар нестабильных частиц в реакции е+еаннигиляции и их последующего распада.		
15 - 16	Множественные процессы		
	Кинематика процессов множественного образования адронов. Кинематические переменные инклюзивных реакций. Инклюзивное образование тяжелых частиц с последующим двухчастичным распадом.		

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Занятия проводятся в интерактивной форме. Даже во время лекции лектор постоянно обращается к аудитории с вопросами как на знание пройденного материала, так и озадачивающими студентов поднимаемой проблемой в рамках обсуждаемой темы.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие	
		(КП 1)	
ПК-1	3-ПК-1	Э, СК-8, КИ-16	
	У-ПК-1	Э, СК-8, КИ-16	
	В-ПК-1	Э, СК-8, КИ-16	
ПК-11.1	3-ПК-11.1	Э, СК-8, КИ-16	
	У-ПК-11.1	Э, СК-8, КИ-16	
	В-ПК-11.1	Э, СК-8, КИ-16	
ПК-3	3-ПК-3	Э, СК-8, КИ-16	
	У-ПК-3	Э, СК-8, КИ-16	
	В-ПК-3	Э, СК-8, КИ-16	

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 – «отлично»	A	Оценка «отлично» выставляется

			T
			студенту, если он глубоко и прочно
			усвоил программный материал,
			исчерпывающе, последовательно,
			четко и логически стройно его
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
7.5.0.1	4 (7127221)		материал, грамотно и по существу
70.74	4 – « <i>xopowo</i> »	D	излагает его, не допуская
70-74			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
60-64			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
Ниже 60			существенные ошибки. Как правило,
ниже оо			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

Оценочные средства приведены в Приложении.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ D99 From Special Relativity to Feynman Diagrams : A Course in Theoretical Particle Physics for Beginners, Cham: Springer International Publishing, 2016
- $2.\, \rm 3 M\ W78\ Kinematics$: Theory and Applications, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016
- 3. ЭИ Т 33 Теоретическая физика Т. 2 Теория поля, : , 2006
- 4. ЭИ Т 33 Теоретическая физика Т. 4 Квантовая электродинамика, : , 2006
- 5. 53 Л75 Сборник задач по квантовой электродинамике : учебное пособие для вузов, Т. А. Ломоносова, Ю. П. Никитин, Москва: НИЯУ МИФИ, 2010

6. ЭИ Л75 Сборник задач по квантовой электродинамике : учебное пособие для вузов, Т. А. Ломоносова, Ю. П. Никитин, Москва: НИЯУ МИФИ, 2010

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1. Лекционная аудитория ()

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Лекции читаются в аудиториях с использованием вычислительной техники, на которой моделируются некоторые процессы и получаемые результаты в их зависимости от параметров реакции. Несмотря на то, что материалы всех лекций практически доступны в соответствующих учебниках и монографиях, важно присутствовать на каждой лекции и вести конспект. Рекомендуется записывать важные моменты, отмечаемые лектором словами, даже если таковые показались очевидными. На протяжении каждой лекции преподаватель может задавать вопросы. Активность студента в виде ответов на вопросы, а также в виде интересных вопросов преподавателю будет учитываться при предоставлении права досрочной сдачи экзамена, а также при выставлении оценки за экзамен.

В ходе изучения курса студенты самостоятельно решают концептуальные задачи, которые приведены в «Заданиях для самостоятельной работы». Совместное обсуждение с преподавателем решения данных задач позволяют более глубоко изучить данный курс.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Общие рекомендации.

Для лучшего усвоения материала студентами каждую лекцию следует начинать с напоминания основных положений предыдущей лекции (можно как в виде вопросов, так и письменного опроса группы) и пояснения ее связи с предстоящей. Также завершать лекцию следует подведением ее краткого итога с указанием темы следующей лекции и ее связи с прошедшей.

На протяжении лекции полезно поддерживать интерактивность между лектором и студентами в виде вопросов в аудиторию и анализа ответов студентов. Важно задавать вопросы на знание материала из прошедших лекций или других курсов по мере обращения к нему или по крайней мере проговаривать их связь. Этим самым студенты могут почувствовать связь между различными знаниями и их востребованность. Также важно в течение лекции задавать вопросы, помогающие студентам усвоить материал в рамках рассказываемой темы, стимулируя внимание и участие студентов.

Важно разъяснять полученные на лекции результаты расчетов и возможность их практического применения (кинематические ограничения, инвариантные кинематические переменные, угловые и энергетические распределений, ...).

В течение семестра выдаются несколько концептуальных задач на группу, которые приведены в «заданиях для самостоятельной работы». Они сдаются самостоятельно студентами и основные проблемы и результаты разбираются на следующих занятиях.

Материал.

Основным учебником по курсу следует считать книгу Гольданский В. И., Никитин Ю. П., Розенталь И. Л. «Кинематические методы в физике высоких энергий».

Автор(ы):

Есипова Екатерина Александровна

Кириллов Александр Александрович

Белоцкий Константин Михайлович, к.ф.-м.н.