Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА МИКРО- И НАНОЭЛЕКТРОНИКИ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ТЕХНОЛОГИЯ СБИС

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	3	108	30	15	15		12-21	0	Э
Итого	3	108	30	15	15	15	12-21	0	

АННОТАЦИЯ

Результатом освоения учебной дисциплины является формирование знаний по технологии изготовления кремниевых интегральных микросхем. Дисциплина изучается в течение двух семестров, охватывая такие вопросы, как процесс подготовки подложек кремния, химическое травление, диффузию примесей в подложке, легирование, эпитаксиальное наращивание кремния и его окисление; фотолитографию и типовые технологические процессы получения толкопленочных и толстопленочных структур.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результатом освоения учебной дисциплины является формирование знаний по технологии изготовления кремниевых интегральных микросхем. Дисциплина изучается в течение двух семестров, охватывая такие вопросы, как процесс подготовки подложек кремния, химическое травление, диффузию примесей в подложке, легирование, эпитаксиальное наращивание кремния и его окисление; фотолитографию и типовые технологические процессы получения толкопленочных и толстопленочных структур.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина относится к специальным дисциплинам, обеспечивающих подготовку по технологии кремниевых интегральных схем. Ее изучение базируется на следующих курсах:

- Математика;
- Общая физика;
- Неорганическая химия;
- Теоретические основы специальности: основы микроэлектроники;
- Материаловедение;

Для освоения данной дисциплины необходимо:

- знать физические основы микроэлектроники, теорию работы и основные характеристики полупроводниковых приборов, их математические модели;
 - уметь выполнять численные оценки параметров технологических процессов;
 - владеть навыками математических расчетов с использованием компьютера.

Освоение данной дисциплины необходимо при последующем изучении дисциплин:

- Проектирование интегральных микросхем;
- Основы оптоэлектроники;
- Микроэлектронные радиотехнические устройства;
- Основы видеотехники.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	Код и наименование
профессиональной	область знания	профессиональной	индикатора
деятельности (ЗПД)	ooner b manna	компетенции;	достижения
дентельности (этгд)		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	Romiciciqui
		опыта)	
	научно-исс	ледовательский	
математическое	электронные	ПК-10.1 [1] - Способен	3-ПК-10.1[1] - законы
моделирование	приборы,	применять методы и	и экспериментальные
электронных	устройства,	концепции	методы физики
приборов, схем и	установки, методы	экспериментальной	конденсированного
устройств различного	их исследования,	физики	состояния вещества,
функционального	математические	конденсированного	лазерной физики,
назначения на базе	модели	состояния вещества,	физики микро- и
стандартных пакетов		лазерной физики,	наносистем, принципы
автоматизированного		фотоники, физики	функционирования
проектирования;		микро- и наносистем	элементов и устройств
участие в		для решения	фотоники и
планировании и		технических,	оптоэлектроники;
проведении		технологических и	У-ПК-10.1[1] -
экспериментов по		функциональных	анализировать научно-
заданной методике,		проблем при создании	техническую
обработка результатов		и эксплуатации	проблему,
с применением		элементов и устройств,	поставленную задачу в
современных		функционирующих на	области
информационных		принципах	нанофотоники, физики
технологий и		наноэлектроники и	конденсированного
технических средств;		нанофотоники	состояния вещества,
анализ научно-			физики наноструктур,
технической		Основание:	используя
информации,		Профессиональный	отечественный и
отечественного и		стандарт: 40.011	зарубежный опыт, а
зарубежного опыта по			также предлагать
тематике			возможные пути ее
исследования; участие			решения;
в подготовке и подаче			В-ПК-10.1[1] -
заявок по			навыками
перспективным			экспериментальной
проектам, грантам в			работы на
рамках проводимых			специализированном
открытых конкурсов			научном
			оборудовании и
			устройствах в области
			фотоники, физики
			наноструктур,
			лазерной физики,

процессы производства, диагностическое и технологическое оборудование, математические модели, алгоритмы решения типовых задач в области электроники и наноэлектроники. Современное программное и информационное обеспечение процессов процессы электронной техники и эксплуатацию определенного технологического процесса или блока технологических операций по производству СБИС, интегральных СВЧ-систем и других изделий электронной техники.; В-ПК-8[1] - Владени технологическими операциями по производству материалов и издели				опто- и наноэлектроники, математического моделирования процессов и объектов применительно к поставленной задаче
Проведение технологических процессов производства призводства, установки, методы их исследования, проектирования и конструирования, проектирования и технологическое оборудование, математические модели, алгоритмы решения типовых задач в области электроники. Современное программное и информационное обеспечение процессов моделирования и проектирования и производству материалов и издели электронной техники протектронной техники простановку и эксплуатацию определенного технологических операция и и интегральных схем, планарных и интеграль		производственн	о-технологический	
подолии	технологических процессов производства материалов и изделий	Материалы, компоненты, электронные приборы, устройства, установки, методы их исследования, проектирования и конструирования. Технологические процессы производства, диагностическое оборудование, математические модели, алгоритмы решения типовых задач в области электроники и наноэлектроники. Современное программное и информационное обеспечение процессов моделирования и проектирования	ПК-8 [1] - Способен выполнять постановку и эксплуатацию определенного технологического процесса или блока технологических операций по производству материалов и изделий электронной техники Основание: Профессиональный стандарт: 29.008,	3-ПК-8[1] - Знание технологий сверхбольших интегральных схем, планарных и иных технологий электроники и наноэлектроники; У-ПК-8[1] - Умение выполнять постановку и эксплуатацию определенного технологического процесса или блока технологических операций по производству СБИС, интегральных СВЧ-систем и других изделий электронной техники.; В-ПК-8[1] - Владение технологическими операциями по
электроники и наноэлектроники. Инновационные технические решения в сфере базовых постулатов проектирования, технологии изготовления и применения электронных приборов и устройств.		электроники и наноэлектроники. Инновационные технические решения в сфере базовых постулатов проектирования, технологии изготовления и применения электронных приборов и		
Организация Материалы, ПК-9 [1] - Способен 3-ПК-9[1] - Знание	Организация	• •	ПК-9 [1] - Способен	3-ПК-9[1] - Знание
метрологического компоненты, выполнять параметров	-	-		

обеспечения производства материалов и изделий электронной техники электронные приборы, устройства, установки, методы их исследования, проектирования и конструирования. Технологические процессы производства, диагностическое и технологическое оборудование, математические модели, алгоритмы решения типовых задач в области электроники и наноэлектроники. Современное программное и информационное обеспечение процессов моделирования и проектирования изделий электроники и наноэлектроники. Инновационные технические решения в сфере базовых постулатов проектирования, технологии изготовления и применения электронных приборов и

определенный тип измерительных или контрольных операций при исследовании параметров полупроводниковых приборов и устройств или в технологическом процессе по производству материалов и изделий электронной техники

Основание: Профессиональный стандарт: 29.002, 40.003

полупроводниковых приборов аналоговой, цифровой, радиочастотной и СВЧ-электроники.; У-ПК-9[1] - Умение выполнять исследования параметров полупроводниковых приборов и устройств в микро- и наноэлектронике; В-ПК-9[1] - Владение методами измерений в технологическом процессе по производству материалов и изделий электронной техники

инновационно-проектный

Применение передовых принципов и подходов при построении физических и математических моделей процессов и явлений, лежащих в основе действия электронных и наноэлектронных

инноваци Материалы, компоненты, электронные приборы, устройства, установки, методы их исследования, проектирования и конструирования. Технологические процессы

устройств.

ПК-17 [1] - Способен оценивать эффективность внедрения новых методов и способов измерения или проектирования или изготовления материалов или изделий электронной техники

3-ПК-17[1] - Знание современных методов проектирования и изготовления материалов и изделий электронной техники; У-ПК-17[1] - Умение оценить эффективность внедрения новых методов изготовления

технологий для	производства,		материалов или
приборов и устройств	диагностическое и	Основание:	изделий электронной
	технологическое	Профессиональный	техники;
	оборудование,	стандарт: 40.011,	В-ПК-17[1] - Владение
	математические	40.104	навыками оценки
	модели, алгоритмы		эффективности
	решения типовых		внедрения новых
	задач в области		способов измерений
	электроники и		параметров изделий
	наноэлектроники.		электронной техники
	Современное		
	программное и		
	информационное		
	обеспечение		
	процессов		
	моделирования и		
	проектирования		
	изделий		
	электроники и		
	наноэлектроники.		
	Инновационные		
	технические		
	решения в сфере		
	базовых постулатов		
	проектирования,		
	технологии		
	изготовления и		
	применения		
	электронных		
	приборов и		
	устройств.		

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал дисциплин
воспитания		
Профессиональное и	Создание условий,	1.Использование воспитательного
трудовое воспитание	обеспечивающих,	потенциала дисциплин
	формирование глубокого	естественнонаучного и
	понимания социальной	общепрофессионального модуля для: -
	роли профессии,	формирования позитивного отношения
	позитивной и активной	к профессии инженера (конструктора,
	установки на ценности	технолога), понимания ее социальной
	избранной специальности,	значимости и роли в обществе,
	ответственного отношения	стремления следовать нормам
	к профессиональной	профессиональной этики посредством
	деятельности, труду (В14)	контекстного обучения, решения
		практико-ориентированных
		ситуационных задач формирования
		устойчивого интереса к
		профессиональной деятельности,
		способности критически,

		самостоятельно мыслить, понимать значимость профессии посредством осознанного выбора тематики проектов, выполнения проектов с последующей публичной презентацией результатов, в том числе обоснованием их социальной и практической значимости; - формирования навыков командной работы, в том числе реализации различных проектных ролей (лидер, исполнитель, аналитик и пр.) посредством выполнения совместных проектов. 2.Использование воспитательного потенциала дисциплины «Экономика и управление в промышленности на основе инновационных подходов к управлению конкурентоспособностью», «Юридические основы профессинальной деятельности» для: - формирования навыков системного видения роли и значимости выбранной профессии в социально-экономических отношениях через контекстное обучение
Профессиональное и	Создание условий,	Использование воспитательного
Профессиональное	обеспечивающих, формирование психологической готовности к профессиональной деятельности по избранной профессии (В15)	потенциала дисциплин общепрофессионального модуля для: -формирования устойчивого интереса к профессиональной деятельности, потребности в достижении результата, понимания функциональных обязанностей и задач избранной профессиональной деятельности, чувства профессиональной ответственности через выполнение учебных, в том числе практических заданий, требующих строгого соблюдения правил техники безопасности и инструкций по работе с оборудованием в рамках лабораторного практикума.
Профессиональное воспитание	Создание условий, обеспечивающих, формирование чувства личной ответственности за научно-технологическое развитие России, за результаты исследований и их последствия (В17)	1.Использование воспитательного потенциала дисциплин профессионального модуля для формирования чувства личной ответственности за достижение лидерства России в ведущих научнотехнических секторах и фундаментальных исследованиях, обеспечивающих ее экономическое развитие и внешнюю безопасность,

		посредством контекстного обучения,
		обсуждения социальной и практической
		значимости результатов научных
		исследований и технологических
		разработок. 2.Использование
		воспитательного потенциала дисциплин
		профессионального модуля для
		формирования социальной
		ответственности ученого за результаты
		исследований и их последствия,
		развития исследовательских качеств
		посредством выполнения учебно-
		исследовательских заданий,
		ориентированных на изучение и
		проверку научных фактов, критический
		анализ публикаций в профессиональной
		области, вовлечения в реальные
		-
		междисциплинарные научно-
П 1	C	исследовательские проекты.
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование	профессионального модуля для
	ответственности за	формирования у студентов
	профессиональный выбор,	ответственности за свое
	профессиональное	профессиональное развитие
	развитие и	посредством выбора студентами
	профессиональные	индивидуальных образовательных
	решения (В18)	траекторий, организации системы
		общения между всеми участниками
		образовательного процесса, в том числе
		с использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование навыков	профессионального модуля для
	коммуникации, командной	развития навыков коммуникации,
	работы и лидерства (В20)	командной работы и лидерства,
	расоты и зищеретва (В20)	творческого инженерного мышления,
		стремления следовать в
		профессиональной деятельности
		нормам поведения, обеспечивающим
		-
		нравственный характер трудовой
		деятельности и неслужебного
		поведения, ответственности за
		принятые решения через подготовку
		групповых курсовых работ и
		практических заданий, решение кейсов,
		прохождение практик и подготовку
		ВКР. 2.Использование
		воспитательного потенциала дисциплин
		профессионального модуля для: -
		формирования производственного
	1	1 /,

		коллективизма в ходе совместного
		решения как модельных, так и
		практических задач, а также путем
		подкрепление рационально-
		технологических навыков
		взаимодействия в проектной
		деятельности эмоциональным эффектом
		успешного взаимодействия, ощущением
		роста общей эффективности при
		распределении проектных задач в
		соответствии с сильными
		компетентностными и эмоциональными
		свойствами членов проектной группы.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование	профессионального модуля для
	способности и стремления	развития навыков коммуникации,
	следовать в профессии	командной работы и лидерства,
	нормам поведения,	творческого инженерного мышления,
	обеспечивающим	стремления следовать в
	нравственный характер	профессиональной деятельности
	трудовой деятельности и	нормам поведения, обеспечивающим
	неслужебного поведения	нравственный характер трудовой
	(B21)	деятельности и неслужебного
		поведения, ответственности за
		принятые решения через подготовку
		групповых курсовых работ и
		практических заданий, решение кейсов,
		прохождение практик и подготовку
		ВКР. 2.Использование
		воспитательного потенциала дисциплин
		профессионального модуля для: -
		формирования производственного
		коллективизма в ходе совместного
		решения как модельных, так и
		практических задач, а также путем
		подкрепление рационально-
		технологических навыков
		взаимодействия в проектной
		деятельности эмоциональным эффектом
		успешного взаимодействия, ощущением
		роста общей эффективности при
		распределении проектных задач в
		соответствии с сильными
		компетентностными и эмоциональными
		свойствами членов проектной группы.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала профильных дисциплин
Boommanne	формирование	«Введение в специальность», «Введение
	ответственности и	в технику физического эксперимента»,
		«Измерения в микро- и
	аккуратности в работе с	<u> </u>
	опасными веществами и	наноэлектронике», «Информационные

при требованиях к нормам высокого класса чистоты (B35)

технологии в физических исследованиях», «Экспериментальная учебно-исследовательская работа» для: - формирования навыков безусловного выполнения всех норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в этих организациях, через выполнение студентами практических и лабораторных работ, в том числе с использованием современных САПРов для моделирования компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ: 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых

		материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов.
Профессиональное воспитание	Создание условий, обеспечивающих, формирование коммуникативных навыков в области разработки и производства полупроводниковых изделий (ВЗ6)	1.Использование воспитательного потенциала профильных дисциплин «Введение в специальность», «Введение в технику физического эксперимента», «Измерения в микро- и наноэлектронике», «Информационные технологии в физических исследованиях», «Экспериментальная учебно-исследовательская работа» для: - формирования навыков безусловного выполнения всех норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в этих организациях, через выполнение студентами практических и лабораторных работ, в том числе с использованием современных САПРов для моделирования компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ; 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по

нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	едели	екции/ Практ. семинары)/ Габораторные аботы, час.	онтроль (форма*, еделя)	Іаксимальный алл за раздел**	ттестация аздела (форма*, еделя)	Индикаторы освоения компетенции
		H		О КО Не	S Z	A ₁ pa He	И 00 КО

	7 Семестр					
1	Первый раздел	1-8	16/8/8	25	КИ-8	3-ПК-10.1, У-ПК-10.1, В-ПК-10.1, 3-ПК-8, У-ПК-8, В-ПК-9, У-ПК-9, В-ПК-9, 3-ПК-17, У-ПК-17,
2	Второй раздел	9-16	14/7/7	25	КИ-16	3-ПК-10.1, У-ПК-10.1, В-ПК-10.1, 3-ПК-8, У-ПК-8, В-ПК-9, У-ПК-9, В-ПК-9, 3-ПК-17, У-ПК-17, В-ПК-17
	Итого за 7 Семестр		30/15/15	50		D IIIC I /
	Контрольные мероприятия за 7 Семестр			50	Э	3-ПК-10.1, У-ПК-10.1, В-ПК-10.1, 3-ПК-8, У-ПК-8, В-ПК-9, У-ПК-9, В-ПК-9, 3-ПК-17, У-ПК-17,

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,	
	7 Caucamp	час. 30	час. 15	час. 15	
1-8	7 Семестр	16	8	8	
1-0	Первый раздел Введение		⊥ о аудиторных	L -	
1	Основные технологические процессы. Планарная	2	тудиторных Г	1	
	технология. Характеристика современной технологии	Онлай	<u> </u>	1	
	ИМС.	Онлаин	0	0	
2	Процесс подготовки подложек кремния	-	т о аудиторных	J	
2	Ориентирование кристаллов. Механическая обработка:	2	тудиторных 1	1	
	резка слитков на пластины, шлифовка и полировка	Онлай	<u> 1</u>	1	
	пластин. Разделение пластин на кристаллы.	0	0	0	
3		<u> </u>			
3	Очистка поверхности кремниевых подложек Материалы для очистки, Вода в производстве ИМС.	2	аудиторных Г 1	1	
	Газовое травление как метод очистки.	Онлай	1	1	
	т азовое травление как метод очистки.	Онлаи	0	0	
4	Химическое травление кремния	-			
4	Полирующие и анизотропные травители. Локальное	2	аудиторных Г 1	1	
	анизотропное травление. Электрохимическая теория	Онлай	<u> </u>	1	
	химического растворения.	Онлаин	0	0	
5	Диффузия примесей в полупроводник				
3	Точечные дефекты в кристаллах. Механизмы диффузии.	2	аудиторных Г 1	1	
	Теория диффузионных процессов.	Онлай	1	1	
	теория диффузионных процессов.	Онлаин	0	0	
6	Пиффуриа в потомо раза, политона	Ů		1 -	
U	Диффузия в потоке газа - носителя Жидкие и газообразные источники примеси. Схема	2	аудиторных Г 1	1	
	установки для проведения диффузионных процессов	Онлай	1	1	
	установки для проведения диффузионных процессов	Онлаин	0	0	
7	Измерение параметров диффузионных слоев	-	1	ų.	
/	Определение поверхностного сопротивления	2	аудиторных Г 1	1	
	четырехзондовым методом. Определение глубины	Онлай	<u> </u>	1	
	залегания р-п перехода.	Онлаин	0	0	
8	1 1	+	1	L -	
O	Легирование полупроводников ионным внедрением Физические основы ионного внедрения. Распределение		Всего аудиторных часов 2 1 1		
	примеси при ионном легировании.	Онлайі	<u>1</u>	1	
	примеен при ношном легировании.	Онлаин	0	0	
9-16	Второй раздел	14	7	7	
9	Практические методы ионного внедрения		⊥ ′ аудиторных	,	
,	Схема установки ионного внедрения. Локальное ионное	2	тудиторных 1	1	
	легирование	Онлай	<u>1</u>	1	
	лет прование	Онлаин	0	0	
10	Радиационные эффекты при ионном легировании	<u> </u>	т о аудиторных		
10	Радиационные эффекты при ионном легировании Радиационные нарушения в кремнии. Зависимость	2	тудиторных 1	1	
	концентрации дефектов от дозы облучения. Отжиг	Онлай	п т	1	
	имплантированного кремния.	Онлаи	0	0	
11					
11	Эпитаксиальное наращивание кремния Реактор для эпитаксии кремния. Получение	2	аудиторных Г 1		
	эпитаксиальных слоев восстановлением SiCl4 водородом,		<u> </u>	1	
	эпитаксиальных слоев восстановлением SIC14 водородом, эпитаксия из SiH4.	Онлай			
10		Danna d	0	0	
12	Легирование эпитаксиальных слоев	всего а	аудиторных	часов	

	Диффузия примесей из подложки. Автолегирование при	2	1	1
	эпитаксии кремния	Онлайн		
		0	0	0
13	Молекулярно-лучевая эпитаксия кремния	Всего аудиторных часов		
	Реактор для молекулярно-лучевой эпитаксии (МЛЭ). МЛЭ	2	1	1
	с одновременным ионным внедрением примеси.	Онлайн		
	Выращивание тонких эпитаксиальных слоев	0	0	0
14	Гетероэпитаксия кремния на сапфире	Всего аудиторных часов		
	Силановый метод гетероэпитаксии. Автолегирование	2	1	1
	алюминием в силановой гетероэпитаксии	Онлайн	I	
		0	0	0
15 - 16	Термическое окисление кремния	Всего аудиторных часов		
	Кинетика окисления. Линейно-параболическая модель	2	1	1
	роста пленок диоксида кремния. Перераспределение	Онлайн		
	примесей на границе кремний – диоксид кремния при	0	0	0
	термическом окислении.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание
	7 Семестр
1 - 4	Ознакомление с процессом диффузии на примере диффузии фосфора из жидкого
	источника
	Проводятся два этапа диффузии – «загонка» и «разгонка» и измеряются параметры
	диффузионных слоев после каждого этапа.
5 - 8	Исследование процесса диффузии бора из твердого планарного источника
	Исследуется зависимость глубины залегания р-п перехода и толщины слоя боро-
	силикатного стекла от времени проведения первого этапа диффузии – загонки.
9 - 12	Исследование процесса термического окисления
	Измеряется зависимость толщины пленки диоксида кремния от времени окисления и
	способность этой пленки служить маской при диффузии фосфора.
13 - 15	Исследование процессов химического изотропного и анизотропного травления
	кремния
	Измеряются скорости травления в различных травителях и форма вытравленных
	областей при локальном анизотропном травлении.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Проводятся занятия в традиционной форме с использованием лекций, практических занятий и лабораторных работ.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие	
		(KП 1)	
ПК-17	3-ПК-17	Э, КИ-8, КИ-16	
	У-ПК-17	Э, КИ-8, КИ-16	
	В-ПК-17	Э, КИ-8, КИ-16	
ПК-8	3-ПК-8	Э, КИ-8, КИ-16	
	У-ПК-8	Э, КИ-8, КИ-16	
	В-ПК-8	Э, КИ-8, КИ-16	
ПК-9	3-ПК-9	Э, КИ-8, КИ-16	
	У-ПК-9	Э, КИ-8, КИ-16	
	В-ПК-9	Э, КИ-8, КИ-16	
ПК-10.1	3-ПК-10.1	Э, КИ-8, КИ-16	
	У-ПК-10.1	Э, КИ-8, КИ-16	
	В-ПК-10.1	Э, КИ-8, КИ-16	

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69	3 –		Оценка «удовлетворительно»

	«удовлетворительно»		выставляется студенту, если он имеет	
		Е	знания только основного материала, но не	
			усвоил его деталей, допускает неточности,	
60-64			недостаточно правильные формулировки,	
			нарушения логической	
			последовательности в изложении	
			программного материала.	
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»	
			выставляется студенту, который не знает	
			значительной части программного	
			материала, допускает существенные	
Ниже 60			ошибки. Как правило, оценка	
			«неудовлетворительно» ставится	
			студентам, которые не могут продолжить	
			обучение без дополнительных занятий по	
			соответствующей дисциплине.	

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- $1.\,004\,\,\mathrm{F}72\,\,\mathrm{Высокопроизводительные}$ вычислительные системы : , Бобков С.Г., Москва: НИИСИ РАН, 2014
- 2. 621.38 М86 Лабораторный практикум по курсу "Технология интегральных микросхем" : учеб. пособие для вузов, Мочалкина О.Р., Воронов Ю.А., Москва: МИФИ, 2004

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. 621.3 К 63 Управление техническим уровнем высокоинтегрированных электронных систем (научно-технологические проблемы и аспекты развития) Т.17 (25) , Комаров А.С., Москва: Техносфера, 2014

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Для лучшего освоения материала курса предлагаются вопросы для самоконтроля.

- 1. Современное состояние технологии ИМС.
- 2. Планарная технология. Типовой технологический процесс планарно-эпитаксиального транзистора.
 - 3. Кристаллическая структура полупроводников. Ориентация слитков.
 - 4. Последовательность операций механической обработки.
 - 5. Резка полупроводниковых слитков на пластины.
 - 6. Абразивные материалы для обработки полупроводниковых пластин.
 - 7. Шлифовка и полировка полупроводниковых подложек.
 - 8. Методы разделения полупроводниковых пластин на кристаллы.
 - 9. Технохимические процессы. Общие сведения.
 - 10. Химическая очистка полупроводниковых подложек
 - 11. Вода в полупроводниковом производстве.
 - 12. Назначение операций очистки полупроводниковых подложек.
 - 13. Требования к реактивам, применяемым для очистки полупроводниковых пластин.
 - 14. Последовательность операций очистки подложек после механической обработки.
 - 15. Теоретическая модель химического травления кремния.
 - 16. Полирующие и селективные травители. Анизотропное травление кремния.
 - 17. Химико-динамическая обработка полупроводниковых подложек.
 - 18. Газовое травление кремния.
 - 19. Электрохимическая обработка полупроводниковых пластин.
 - 20. Механизм диффузии примесей в кремнии.
 - 21. Локальная диффузия.
 - 22. Характеристики диффузантов.
 - 23. Математические модели процессов диффузии.
 - 24. Распределение примесей.
- 25. Практические методы диффузии (жидкие, твердые, газообразные, пленкообразующие источники).
 - 26. Дефекты, возникающие при диффузии.
 - 27. Контроль параметров диффузионных слоев.
- 28. Метод ионной имплантации. Беспорядочный и каналированный пучок. 29. Средний нормальный пробег, среднеквадратичное отклонение, боковое рассеяние при ионной имплантации.
 - 30. Распределение примесей при ионном легировании.
 - 31. Схема ионно-лучевой установки.
 - 32. Назначение блоков установки ионного легирования.
 - 33. Вещества источники ионов для внедрения в полупроводниковые подложки.
 - 34. Достоинства ионного легирования.
 - 35. Применение ионного легирования в технологии ИМС.
- 36. Радиационные эффекты при ионном легировании (коэффициент использования примеси, доза аморфизации).
 - 37. Отжиг дефектов, создаваемых при ионном легировании.
 - 38. Импульсный отжиг полупроводниковых подложек.
 - 39. Физические методы исследования ионно-легированных слоев.

- 40. Применение ионной имплантации в технологии ИМС.
- 41. Понятие эпитаксии, виды эпитаксии.
- 42. Механизм газофазной эпитаксии.
- 43. Хлоридный метод газофазной эпитаксии.
- 44. Газовая система.
- 45. Реакторы для газофазной эпитаксии.
- 46. Управление качеством и скоростью эпитаксии для газофазного процесса.
- 47. Легирование эпитаксиальных слоев при газофазной эпитаксии.
- 48. Распределение примесей на границе пленка-подложка при газофазной эпитаксии.
- 49. Эпитаксия на подложках со скрытыми слоями.
- 50. Силановый (гидридный) метод автоэпитаксии кремния.
- 51. Гетероэпитаксия кремния на сапфире. Характеристики используемых материалов.
- 52. Механизм осаждения гетероэпитаксиальных пленок кремния на сапфире. Дефекты пленок при гетероэпитаксии.
 - 53. Контроль параметров эпитаксиальных слоев.
 - 54. Молекулярно-лучевая эпитаксия. Достоинства, недостатки.
 - 55. Схема установки молекулярно-лучевой эпитаксии.
- 56. Методы легирования эпитаксиальных слоев при молекулярно-лучевой эпитаксии. Характеристики примесей. Коэффициент аккомодации.
 - 57. Применение тонких пленок в микроэлектронике.
 - 58. Термическое окисление кремния. Законы роста пленок SiO2.
 - 59. Окисление в сухом кислороде и в парах воды. Термокомпрессионное окисление.
 - 60. Заряд в пленках SiO2, образующийся при термическом окислении
 - 61. Окисление в галогеносодержащих средах.
 - 62. Диэлектрические и маскирующие свойства пленок диоксида кремния.
- 63. Перераспределение примесей при термическом окислении кремния. Коэффициент сегрегации.
- 64. Получение тонких пленок вакуумным напылением. Факторы, влияющие на чистоту и равномерность толщины пленок на подложке. Эмиссионные характеристики испарителей.
- 65. Получение тонких пленок ионно-плазменным напылением. Факторы, влияющие на скорость распыления. Преимущества трехэлектродных и магнетронных систем распыления.
 - 66. Реактивное ионно-плазменное распыление. Ионно-плазменное анодироваение.
- 67. Ионно-плазменные методы получения диэлектрических пленок. Ионно- плазменное высокочастотное распыление диэлектриков.
- 68. Получение тонких пленок из парогазовых смесей. Химические реакции и способы их активации. Схемы установок для плазменного нанесения пленок из парогазовых смесей.
- 69. Ионное травление. Ионно-плазменный и плазмо-химический методы травления. Особенности локального травления.
- 70. Методы контроля толщины пленок. Резистивный и емкостной методы контроля. Цветовой метод определения толщины диоксида кремния. Эллипсометрия.
- 71. Фотолитография. Последовательность технологических операций при фотолитографии.
- 72. Фоторезисты. Негативные и позитивные фоторезисты. Основные характеристики фоторезистов.
- 73. Фотошаблоны. Последовательность технологических процессов создания фотошаблонов.

- 74. Метод фотонабора для создания фотошаблонов. Схема установки и последовательность технологических операций.
- 75. Электронолитография . Установка для литографии сфокусированным электронным пучком. Способы сканирования пучка.
- 76. Рентгенолучевая и ионная литография. Схема проведения процессов и шаблоны при рентгенолучевой и ионной литографии.
- 77. Методы изоляции элементов в ИМС. Изоляция элементов р-п переходом и диэлектрическими пленками.
- 78. Локальное окисление кремния. Последовательность технологических операций. Дефекты структуры типа «птичий клюв» и «птичья голова». Способ планаризации поверхности при локальном окислении.
 - 79. Изопланарная технология. Виды изопланарных структур и технология их получения.
- 80. Технологический процесс изготовления изопланарной биполярной ИМС. Последовательность технологических операций.
- 81. Технологический процесс изготовления п-канальных МОП-ИС. Последовательность технологических операций.
- 82. Многоуровневая металлическая разводка в БИС. Структура и технологические операции изготовления многоуровневой разводки. Роль силицидов металлов и поликремния в структуре многоуровневой разводки.
 - 83. Технологический цикл изготовления тонкопленочных ИС.
- 84. Технология тонкопленочных ИС. Материалы резистивных, диэлектрических и проводящих пленок в технологии тонкопленочных схем.
- 85. Подложки для пленочных ИМС. Требования к материалам. Сравнительная оценка основных материалов для подложек.
- 86. Технология толстопленочных схем. Материалы, используемые в технологии толстопленочных ИС и методы их нанесения.
- 87. Сборка интегральных микросхем. Методы присоединения кристаллов и выводов. Причины ненадежности термокомпрессионных соединений.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Аттестация по дисциплине проводится в устной форме в виде опроса по вопросам, а так же путем письменного решения заданий контрольной работы, если в течение текущей аттестации студент показал неудовлетворительные результаты по проверочным работам.

Автор(ы):

Веселов Денис Сергеевич, к.т.н.