Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

КАФЕДРА ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ ЯДЕРНЫХ РЕАКТОРОВ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЭКСПЕРИМЕНТАЛЬНАЯ РЕАКТОРНАЯ ФИЗИКА

Направление подготовки (специальность)

[1] 14.04.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
3	3	108	0	48	0		24	0	Э
Итого	3	108	0	48	0	0	24	0	

АННОТАЦИЯ

Курс содержит сведения о современном состоянии проблем получения экспериментальной информации о нейтронно - физических процессах в ядерных реакторах и об их характеристиках, о применяемых для экспериментов методах и приборах. Обсуждается взаимосвязь между экспериментом и расчетом и ее влияние на условия проведения опытов. Рассматриваются основные задачи экспериментальной реакторной физики и современный подход к их решению. Анализируются возможности усовершенствования технологии экспериментальных исследований и повышения их эффективности и информативности.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель изучения дисциплины заключается в ознакомлении студентов с современным состоянием экспериментальных исследований на ядерных реакторах и перспективами продолжения их развития, особенностями проведения экспериментов на установках разных типов, отличающихся спектром, плотностью потока нейтронов и режимами работы и приобретении навыков выбора оптимальных приборно-методических решений задач, стоящих перед нейтронными реакторными экспериментами.

Задачи изучения дисциплины:

- приобретение знаний об особенностях проведения нейтронно-физических экспериментов на реакторных установках разного типа;
- овладение навыками оптимального выбора методического и приборного решения при проведении реакторных экспериментов с учетом необходимой информативности полученных результатов и минимальных затрат.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Содержание программы направлено на формирование знаний в области экспериментальной ядерной физики. Изучение данной дисциплины позволит получить знания о реакторных экспериментах и экспериментальной аппаратуре. Изучение курса требует освоения студентами дисциплин, в которых даются основы ядерных технологий. Помимо этого необходимо знакомство с дисциплинами по теории вероятности.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

÷ , , ,	* *
Код и наименование компетенции	Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или область	Код и наименование	Код и наименование
профессиональной	знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения

		Основание (профессиональный стандарт-ПС, анализ опыта)	профессиональной компетенции
	проен	стный	
совокупность средств, способов и методов человеческой деятельности, связанных с разработкой, созданием и эксплуатацией установок, вырабатывающих, преобразующих и использующих ядерную энергию	ядерные реакторы и энергетические установки, теплогидравлические и нейтроннофизические процессы в активных зонах ядерных реакторов, тепловые измерения и контроль, теплоносители, материалы ядерных реакторов, ядерный топливный цикл, системы обеспечения безопасности ядерных энергетических установок, системы управления ядернофизическими установками, программные комплексы и математические модели для теоретического и экспериментального исследования явлений и закономерностей в области теплофизики и энергетики, перспективные методы преобразования энергии.	ПК-9.1 [1] - способен к оценке перспектив развития ядерных энергетических технологий и системному анализу эффективности, безопасности и надежности проектов ЯЭУ Основание: Профессиональный стандарт: 24.028	З-ПК-9.1[1] - Знать передовой отечественный и зарубежный опыт в области эксплуатации ЯЭУ; У-ПК-9.1[1] - Уметь обобщать и анализировать информацию, планировать виды деятельности и разрабатывать планы работ; В-ПК-9.1[1] - Владеть информацией по перспективам развития атомной энергетики
совокупность средств, способов и методов	ядерные реакторы и энергетические установки,	ПК-5 [1] - Способен проводить расчет и проектирование	3-ПК-5[1] - Знать основные физические законы и
человеческой деятельности,	теплогидравлические и нейтронно-	физических установок и приборов с	стандартные прикладные пакеты
связанных с разработкой, созданием и эксплуатацией	физические процессы в активных зонах ядерных реакторов, тепловые измерения и	использованием современных информационных технологий	используемые при моделировании физических процессов и
установок, вырабатывающих, преобразующих и использующих	контроль, теплоносители, материалы ядерных реакторов, ядерный	Основание: Профессиональный стандарт: 24.028	установок; У-ПК-5[1] - Уметь применять стандартные

ядерную энергию	топливный цикл, системы обеспечения		прикладные пакеты используемые при
	безопасности ядерных		моделировании
	энергетических		физических
	установок, системы		процессов и
	управления ядерно- физическими		установок; В-ПК-5[1] - Владеть
	установками,		стандартными
	программные		прикладными
	комплексы и		пакетами
	математические		используемыми при
	модели для		моделировании
	теоретического и		физических
	экспериментального		процессов и
	исследования явлений		установок
	и закономерностей в		yeranobok
	области теплофизики		
	и энергетики,		
	перспективные методы		
	преобразования		
	энергии.		
	1	довательский	
совокупность	ядерные реакторы и	ПК-9.2 [1] - способен	3-ПК-9.2[1] - Знать
средств, способов и	энергетические	использовать	новые методы
методов	установки,	современные	совершенствования
человеческой	теплогидравлические	достижения и	действующих
деятельности,	и нейтронно-	передовые технологии	технологических
связанных с	физические процессы	в научно-	процессов;
разработкой,	в активных зонах	исследовательских	У-ПК-9.2[1] - Уметь
созданием и	ядерных реакторов,	работах для	анализировать
эксплуатацией	тепловые измерения и	проведения расчетно-	информационные
установок,	контроль,	теоретических	документы с
вырабатывающих,	теплоносители,	разработок ЯЭУ, учета	результатами
преобразующих и	материалы ядерных	и контроля объектов с	научных
использующих	реакторов, ядерный	ядерными	исследований;
ядерную энергию	топливный цикл,	материалами	В-ПК-9.2[1] -
	системы обеспечения		Владеть
	безопасности ядерных	Основание:	современными
	энергетических	Профессиональный	пакетами
	установок, системы	стандарт: 24.028	прикладных
	управления ядерно-		компьютерных
	физическими		программ
	установками,		
	программные		
	комплексы и		
	математические		
	модели для		
	теоретического и		
	экспериментального		
	исследования явлений		
	и закономерностей в		

области теплофизики

	и энергетики, перспективные методы преобразования		
совокупность	энергии. ядерные реакторы и	ПК-4 [1] - Способен	3-ПК-4[1] - Знать:
средств, способов и	энергетические	самостоятельно	цели и задачи
методов	установки,	выполнять	проводимых
человеческой	теплогидравлические	экспериментальные и	исследований;
деятельности,	и нейтронно-	теоретические	основные методы и
связанных с	физические процессы	исследования для	средства проведения
разработкой,	в активных зонах	решения научных и	экспериментальных и
созданием и	ядерных реакторов,	производственных	теоретических
эксплуатацией	тепловые измерения и	задач	исследований;
установок,	контроль,		методы и средства
вырабатывающих,	теплоносители,	Основание:	математической
преобразующих и	материалы ядерных	Профессиональный	обработки
использующих	реакторов, ядерный	стандарт: 24.028	результатов
ядерную энергию	топливный цикл,		экспериментальных
	системы обеспечения		данных;
	безопасности ядерных		У-ПК-4[1] - Уметь:
	энергетических установок, системы		применять методы проведения
	управления ядерно-		экспериментов;
	физическими		использовать
	установками,		математические
	программные		методы обработки
	комплексы и		результатов
	математические		исследований и их
	модели для		обобщения;
	теоретического и		оформлять
	экспериментального		результаты научно-
	исследования явлений		исследовательских
	и закономерностей в		работ;
	области теплофизики		В-ПК-4[1] - Владеть:
	и энергетики,		навыками
	перспективные методы		самостоятельного
	преобразования		выполнения
	энергии.		экспериментальных и
			теоретических
			исследования для
			решения научных и производственных
			задач
	инновац	 µонный	Sugu I
совокупность	ядерные реакторы и	ПК-13 [1] - Способен	3-ПК-13[1] - Знать
средств, способов и	энергетические	проектировать,	математические
методов	установки,	создавать и внедрять	методы и
человеческой	теплогидравлические	новые продукты и	компьютерные
деятельности,	и нейтронно-	системы и применять	технологии,
связанных с	физические процессы	теоретические знания	необходимые для
разработкой,	в активных зонах	в реальной	проектирования и
созданием и	ядерных реакторов,	инженерной практике	разработки

эксплуатацией	тепловые измерения и	_	программного
установок,	контроль,	Основание:	обеспечения для
вырабатывающих,	теплоносители,	Профессиональный	инженерного анализа
преобразующих и	материалы ядерных	стандарт: 24.028	инновационных
использующих	реакторов, ядерный		продуктов. ;
ядерную энергию	топливный цикл,		У-ПК-13[1] - Уметь
	системы обеспечения		разрабатывать и
	безопасности ядерных		тестировать
	энергетических		программное
	установок, системы		обеспечение для
	управления ядерно-		инженерного анализа
	физическими		инновационных
	установками,		продуктов.;
	программные		В-ПК-13[1] - владеть
	комплексы и		навыками разработки
	математические		и тестирования
	модели для		программного
	теоретического и		обеспечения для
	экспериментального		инженерного анализа
	исследования явлений		инновационных
	и закономерностей в		продуктов.
	области теплофизики		
	и энергетики,		
	перспективные методы		
	преобразования		
	энергии.		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	3 Семестр						
1	Часть 1	1-8	0/24/0		25	КИ-8	3-ПК-4, У-ПК-4, В-ПК-4, 3-ПК-5, У-ПК-5, В-ПК-9.1, У-ПК-9.1, В-ПК-9.1, 3-ПК-9.2, У-ПК-9.2, У-ПК-9.2, З-ПК-9.2, З-ПК-9.2,

	T	1	1	1	1	
						У-ПК-13,
						В-ПК-13
2	Часть 2	9-15	0/24/0	25	КИ-15	3-ПК-4,
						У-ПК-4,
						В-ПК-4,
						3-ПК-5,
						У-ПК-5,
						В-ПК-5,
						3-ПК-9.1,
						У-ПК-9.1,
						В-ПК-9.1,
						3-ПК-9.2,
						У-ПК-9.2,
						В-ПК-9.2,
						3-ПК-13,
						У-ПК-13,
						В-ПК-13
	Итого за 3 Семестр		0/48/0	50		
	Контрольные			50	Э	3-ПК-4,
	мероприятия за 3					У-ПК-4,
	Семестр					В-ПК-4,
						3-ПК-5,
						У-ПК-5,
						В-ПК-5,
						3-ПК-9.1,
						У-ПК-9.1,
						В-ПК-9.1,
						3-ПК-9.2,
						У-ПК-9.2,
						В-ПК-9.2,
						3-ПК-13,
						У-ПК-13,
1						В-ПК-13

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	3 Семестр	0	48	0
1-8	Часть 1	0	24	0
1	1. Введение		удиторных	часов

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	Задачи курса. Необходимость проведения эксперимента в	0	6	0
	нейтронной и реакторной физике. Требования к условиям	Онлайн		, ,
	и результатам. Связь эксперимента и расчета.	0	0	0
2 - 4	2. Источники нейтронов, детектирование нейтронов		тудиторных	
	Ядерные реакции, используемые для получения	0	6	0
	нейтронов. Характеристики источников: энергетическое и	Онлайн	_	, ·
	временное распределение нейтронов, мощность	0	0	0
	источника, сопутствующие излучения. Радиоактивные			
	источники нейтронов, их характеристики.			
	Применение ускорителей заряженных частиц для			
	получения нейтронов. Применение ускорителей			
	электронов. Возможность получения пучков			
	моноэнергетических нейтронов с помощью ускорителей			
	тяжелых частиц. Протонный ускоритель как мощный			
	источник нейтронов.			
	Возможности нейтронных экспериментов на ядерных			
	реакторах. Задачи выведения и формирования нейтронных			
	пучков.			
	Принцип работы детекторов. Их характеристики:			
	энергетическое и временное разрешение, эффективность.			
	Представление детектора с помощью функции отклика.			
	Газовые ионизационные детекторы. Камеры деления.			
	Пропорциональные счетчики. Коронные счетчики.			
	Применение газовых детекторов. Сцинтилляционные			
	детекторы. Устройство и типы сцинтилляционных			
	детекторов. Применение сцинтилляционных детекторов.			
	Полупроводниковые детекторы, их устройство и			
	конструкция. Калибровка детекторов. Математическая			
	обработка результатов спектрометрических измерений.			
	Активационный анализ. Возмещение нейтронного поля			
	детектором. Эффекты искажения информации в			
	электронном измерительном тракте. Способы получения			
	поправок.			
5 - 7	3. Сечения нейтронных реакций	Всего а	удиторных	часов
	Полное и парциальные сечения, относительные изменения	0	6	0
	сечений и абсолютные величины.	Онлайі		1
	Измерение полного сечения взаимодействия нейтронов	0	0	0
	методом пропускания. Определение параметров			
	резонансов. Искажение результатов в результате эффекта			
	Допплера и интерференции между потенциальным и			
	резонансным упругим рассеянием.			
	Сечения упругого и неупругого рассеяния, их зависимости			
	от энергии. Схемы опытов по измерению сечений			
	рассеяния.			
	Сечение радиационного захвата. Способы определения,			
	аппаратура, схемы опытов. Результаты измерений сечения			
	Booking to House grow Dyoneya Houseya House			
	Реакция деления ядер. Энергия деления, продукты			
	деления, мгновенные и запаздывающие нейтроны.			
	Зависимость сечения от энергии и массового числа ядра.			
	Конкуренция деления с другими реакциями. Обзор и			
	анализ сечений упругого и неупругого рассеяния,]	1

	радиационного захвата, (n,p), (n,□), (n,n')-реакций. Схема			
	опыта по измерению сечений деления, результаты.			
8	4. Измерение спектров нейтронов	Всего а	аудиторных	часов
	Параметры стационарного поля нейтронов: плотность		6	0
	потока нейтронов, спектр нейтронов, флюенс нейтронов.		H	•
	Спектры нейтронов в реакторах разных типов. Требуемая	0	0	0
	информация о спектре, условия проведения опытов.			
	Ограничения. Способы определения интегральных			
	характеристик спектра: метод поглощающего экрана,			
	метод спектральных индексов.			
	Применение наборов активационных детекторов для			
	определения спектра нейтронов. Формирование			
	оптимального набора с учетом чувствительности			
	детекторов. Восстановление спектра по результатам			
	активационных измерений. Погрешности. Способ			
	проверки результатов.			
	Измерение спектра нейтронов "по времени пролета".			
	Схема установки. Разрешающая способность и скорость			
	набора информации. Оптимизация параметров			
	(длительность импульса, длина пролетной базы)			
	измерительной установки. Примеры установок для			
	измерений реакторных спектров.			
9-15	Часть 2	0	24	0
9 - 10	5. Определение размножающих свойств среды	Всего а	аудиторных	часов
	Составы и структуры размножающих сред. Параметры	0	6	0
	размножения, требования к точности их определения.	Онлайі		
	Экспоненциальный опыт, пространственно энергетическое	0	0	0
	распределение нейтронов в подкритической сборке.		J	
	Источники и детекторы нейтронов для подкритических			
	опытов, размеры сборок. Особенности опытов с			
	гетерогенными средами. Обзор результатов			
	экспоненциальных опытов с различными средами.			
	Определение критического размера реактора методом			
	приближения к критическому состоянию. Схема опыта:			
	размещение источника, детектора, способы измерения			
	размеров сборки.			
11 - 12	6. Измерение нейтронно-физических параметров		ц аудиторных	часов
11 12	решетки ядерного реактора Измерение параметра МКК: применяемый детектор, его расположение, измеряемые величины, аппаратура,		6	0
			H	0
			0	0
	погрешности измерений.	0		0
	Измерение параметров 25 □ и 28 □: детекторы, их			
	расположение, измеряемые величины. Два возможных			
	подхода к решению задачи: с помощью кадмиевого экрана			
	и с помощью детектора тепловых нейтронов.			
	Погрешности измерений и интерпретация результатов.			
	Измерение параметра 28 □: детекторы, их расположение,			
	измеряемые величины. Погрешности результатов			
	измеряемые величины. Погрешности результатов измерений.			
	Связи физических параметров ячейки со спектром			
	нейтронов и коэффициентами в формуле четырех			
1	сомножителей.			

	Погрешность определения физических параметров и ее				
	соответствие требованиям.				
13 - 14	7. Методы измерения реактивности	Всего а	удиторных	часов	
	Понятие о реактивности, единицы измерения	0	6	0	
	реактивности. Температурный и мощностной	Онлайі	Онлайн		
	коэффициенты реактивности. Некритический реактор.	0	0	0	
	Уравнения точечной кинетики, их применимость. Задача				
	управления реактором. Определение реактивности				
	методом измерения асимптотического периода. Границы				
	применимости метода. Изменения значения □эф при				
	работе реактора. Измерения реактивности с помощью				
	реактиметров. Масштабы измеряемых значений				
	реактивности. Погрешности измерений.				
	Определение реактивности методом сброса				
	поглощающего стержня. Интегральный и				
	дифференциальный методы. Применение метода.				
15 - 16	8. Анализ изотопного состава топлива.	Всего аудиторных часов			
	Измерение изотопного состава топлива в процессе работы	0	6	0	
	реактора. Интегральные параметры, характеризующие	Онлайн			
	долговременную работу реактора: энерговыработка,	0	0	0	
	выгорание топлива, флюенс нейтронов, и др. Методы,				
	применяемые для анализов состава топлива.				
	Неразрушающие измерения выгорания ядерного топлива в				
	ТВС. Гамма- спектрометрическое определение выгорания:				
	условия опыта, измерительная система, погрешности				
	результатов измерений. Определение выгорания по				
	результатов измерений. Определение выгорания по				
	результатов измерений. Определение выгорания по нейтронному излучению отработавших ТВС. Определение выгорания и содержания трансурановых радионуклидов в топливе с помощью метода изотопных корреляций.				
	результатов измерений. Определение выгорания по нейтронному излучению отработавших ТВС. Определение выгорания и содержания трансурановых радионуклидов в				
	результатов измерений. Определение выгорания по нейтронному излучению отработавших ТВС. Определение выгорания и содержания трансурановых радионуклидов в топливе с помощью метода изотопных корреляций. Разрушающие методы анализа: радиохимия, массспектрометрия.				
	результатов измерений. Определение выгорания по нейтронному излучению отработавших ТВС. Определение выгорания и содержания трансурановых радионуклидов в топливе с помощью метода изотопных корреляций. Разрушающие методы анализа: радиохимия, масс-				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Курс реализует компетентностный подход и предусматривает широкое использование в учебном процессе активных форм проведения занятий (практические занятия, система контрольно-измерительных материалов, включая тесты) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	-	(КП 1)
ПК-13	3-ПК-13	Э, КИ-8, КИ-15
	У-ПК-13	Э, КИ-8, КИ-15
	В-ПК-13	Э, КИ-8, КИ-15
ПК-4	3-ПК-4	Э, КИ-8, КИ-15
	У-ПК-4	Э, КИ-8, КИ-15
	В-ПК-4	Э, КИ-8, КИ-15
ПК-5	3-ПК-5	Э, КИ-8, КИ-15
	У-ПК-5	Э, КИ-8, КИ-15
	В-ПК-5	Э, КИ-8, КИ-15
ПК-9.1	3-ПК-9.1	Э, КИ-8, КИ-15
	У-ПК-9.1	Э, КИ-8, КИ-15
	В-ПК-9.1	Э, КИ-8, КИ-15
ПК-9.2	3-ПК-9.2	Э, КИ-8, КИ-15
	У-ПК-9.2	Э, КИ-8, КИ-15
	В-ПК-9.2	Э, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89	4 – « <i>xopouo</i> »	В	Оценка «хорошо» выставляется студенту,

75-84		С	если он твёрдо знает материал, грамотно и
			по существу излагает его, не допуская
70-74		D	существенных неточностей в ответе на
			вопрос.
65-69			Оценка «удовлетворительно»
		Е	выставляется студенту, если он имеет
			знания только основного материала, но не
	3 — «удовлетворительно»		усвоил его деталей, допускает неточности,
60-64			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
Ниже 60			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. 006 П81 Метрология, стандартизация и сертификация в атомной отрасли : монография, Пронкин Н.С., Немчинов В.М., Москва: НИЯУ МИФИ, 2014
- 2. ЭИ П81 Метрология, стандартизация и сертификация в атомной отрасли : монография, Пронкин Н.С., Немчинов В.М., Москва: НИЯУ МИФИ, 2014
- 3. 621.039 Б94 Экспериментальная реакторная физика : учебное пособие для вузов, Бушуев А.В., Москва: МИФИ, 2008
- 4. ЭИ Б94 Экспериментальная реакторная физика : учебное пособие для вузов, Бушуев А.В., Москва: МИФИ, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении курса следует ознакомиться с различными типами источников нейтронов и их характеристиками (мощность и спектр нейтронов, режимы генерации), с системами детектирования радиоактивных излучений, методами измерения энергетических и временных спектров.

Особое внимание необходимо уделить изучению нейтронных реакций в разных диапазонах энергии, на ядрах разной массы. Следует сформулировать выводы о том, какие процессы наиболее вероятны для медленных и быстрых нейтронов, как изменяются соотношения между вероятностями процессов в зависимости от типа реактора.

Нужно установить факторы, влияющие на формирование нейтронного поля и ознакомиться с методами, применяемыми для определения спектров нейтронов в экспериментальных и энергетических реакторах.

Нужно знать требования, предъявляемые к нейтронным датчикам, применяемым в системах управления нейтронным полем в реакторах.

Нужно знать принципы построения систем внутриреакторного контроля. Следует знать приемы перекалибровки эффективности датчиков для учета их выгорания.

Требуется усвоить важность определения глубины выгорания ядерного топлива в реакторе и ознакомиться с методами её определения, основанными на гамма-спектрометрии и измерениях нейтронного излучения топливных сборок. Провести анализ погрешностей определения выгорания и способов их минимизации.

Провести сравнительный анализ разрушающих и неразрушающих методов определения нуклидного состава ядерного топлива: точности, трудоёмкости, стоимости. Надо иметь представление о принципах и особенностях разрушающих методов: масс-спектрометрии, альфа-спектрометрии.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Необходимо объяснить студентам историю и направления развития современной физики реакторов, требования к современным реакторным экспериментам, необходимость измерений для эффективной и безопасной эксплуатации ядерных реакторов. В связи с развитием ядерного топливного цикла существует постоянная потребность в уточнении и дополнении ядерных данных. Достижение этих целей требует развития приборно-методической базы для экспериментов на реакторах разных типов.

Нужно показать, что в связи с неуклонным увеличением продолжительности облучения ядерного топлива возникает потребность в новых данных о сечениях реакций, а значит в новых экспериментах. Следует объяснить, что для определения каждого реакторного параметра существует несколько методов и успех исследования определяется выбором оптимального решения. Следует провести сравнение неразрушающих и разрушающих анализов и указать на растущее применение неразрушающих методов.

При анализе различных экспериментов (измерения нейтронных сечений, определение реакторных параметров) следует уделять внимание способам минимизации влияющих факторов. Дать определению понятию "качества" метода и рассмотреть меры по контролю качества. Рассмотреть возможности снижения фона с помощью пассивной и активной защиты детекторов. Рассказать о роли программ математической обработки экспериментальных данных для обнаружения и измерения эффектов.

Следует особое внимание уделить вопросам измерений реактивности и измерений нуклидного состава топлива в процессе его облучения в реакторе. При описании методов измерений нужно фиксировать внимание на границах их применимости и достижимой точности. Указать на связь между требуемой точностью и технико-экономическими последствиями погрешностей. Объяснить, почему для экспериментов на разных реакторах применяют разные методы и приборы.

Автор(ы):

Стогов Юрий Владимирович, к.т.н., с.н.с.

Бушуев Анатолий Васильевич, д.ф.-м.н., профессор