Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ЛАЗЕРНОЙ ФИЗИКИ

ОДОБРЕНО УМС ЛАПЛАЗ

Протокол № 1/08-577

от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ И ОХЛАЖДЕНИЕ АТОМОВ

Направление подготовки (специальность)

[1] 12.04.05 Лазерная техника и лазерные технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
2	2	72	15	15	0		42	0	3
3	3	108	16	16	0		40	0	Э
Итого	5	180	31	31	0	0	82	0	

АННОТАЦИЯ

Курс состоит из двух семестров. Первый семестр посвящен современных проблемам квантовой электроники. Изучаются характеристики перестраиваемых лазеров, работающих в непрерывном одночастотном режиме. Анализируется фундаментальное спектрального разрешения таких лазеров, обусловленное влиянием спонтанного шума на фазовые флуктуации поля рабочей моды лазера. Для различных типов лазеров сопоставлены вклады названного фундаментального ограничения и технических частотных шумов. Описываются методы сужения линии генерации, селекции мод для обеспечения одночастотной генерации, перестройки и стабилизации частоты лазерного излучения. Также, изучаются нелинейной внутридоплеровской следующие метолы спектроскопии: однофотонная спектроскопия насыщения; интерференционная, поляризационная, двухфотонная; спектроскопия ионных пучков. Анализируются различные механизмы формирования нелинейности. Обсуждаются ограничения спектрального разрешения в этих методах.

Второй семестр посвящен лазерной спектроскопии и охлаждению атомов. Первые три лекции посвящены спектроскопии высокого временного разрешения. В них изучаются методы генерации ультракоротких импульсов лазерного излучения и рассматривается ряд их применений. Остальные лекции представляют собой введение в физику лазерного охлаждения атомов, в которых анализируются методы управления внутренними и внешними степенями свободы атомов. Значительная часть материала содержит описание экспериментальных методов формирования вырожденных разреженных Бозе и Ферми газов. Заключительная лекция дает краткий обзор применения ультрахолодных атомов в метрологии частоты и времени.

Учебные задачи курса. Ознакомиться с принципом работы перестраиваемых лазеров и их основными характеристиками. Освоить физику формирования внутридоплеровских спектров. Понимать достоинства и недостатки различных методов спектроскопии свободной от доплеровского уширения. Освоить методы формирования и усиления ультракоротких импульсов лазерного излучения. Ознакомиться с их применением в исследованиях быстропротекающих процессов. Достичь понимания основных идей, обеспечивающих глубокое охлаждение атомов. Уметь оценить доплеровский предел температуры. Понимать экспериментальные методы формирования вырожденных газов и роль специфики механизмов рассеяния при низких температурах.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью изучения дисциплины «Лазерная спектроскопия и охлаждение атомов» является формирование у магистрантов общего представления о путях развития квантовой радиофизики и отработки навыков необходимых для успешной научной и профессиональной деятельности в квантовой радиофизике и, вчастности, лазерной спектроскопии высокого спектрального и временного разрешения и многих ее приложениях, таких, в частности, как физика плазмы, метрология, физика классических и вырожденных разреженных газов при ультранизких температурах

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина логически и содержательно-методически связана со следующими разделами физики: механикой классической и квантовой, электродинамикой, статистической физикой, оптикой, лазерной физикой. Освоение данной дисциплины необходимо для получения теоретической базы и знакомства с экспериментальными методами классических и наиболее актуальных направлений квантовой радиофизики, лазерной спектроскопии и ее приложений.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	Код и наименование
профессиональной	область знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	
		опыта)	
	научно-исс.	педовательский	
формулирование	процессы	ПК-1.2 [1] - способен	3-ПК-1.2[1] - Знать:
задачи и плана	взаимодействия	использовать знания	основы теории
научного	лазерного	основ теории	резонансного
исследования в	излучения с	резонансного	взаимодействия
области лазерной	веществом,	взаимодействия	излучения с
физики, техники и	включая	излучения с веществом;	веществом; теории
лазерных технологий	биологические	теории квантовых	квантовых усилителей
на основе проведения	объекты; лазерные	усилителей и	и генераторов, методы
библиографической	приборы, системы и	генераторов, методов	создания и усиления
работы с применением	технологии	создания и усиления	коротких лазерных
современных	различного	коротких лазерных	импульсов;
информационных	назначения;	импульсов в своей	У-ПК-1.2[1] - Уметь:
технологий;	процессы	практической	описывать процессы,
построение	генерации,	деятельности;	происходящие при
математических	усиления,		усилении и генерации
моделей объектов	модуляции,	Основание:	лазерного излучения.;
исследования, выбор	распространения и	Профессиональный	В-ПК-1.2[1] - Владеть:
алгоритма решения	детектирования	стандарт: 29.004	методами оценки
задачи; теоретические	лазерного		параметров лазерного
и экспериментальные	излучения;		излучения
исследования в	элементная база		
области физики	лазерной техники,		
лазеров,	технологий и		
взаимодействия	систем управления		
лазерного излучения с	и транспорта		
веществом, лазерных	лазерного		

технологий;	излучения;		
разработка методов	математические		
лазерной диагностики	модели объектов		
сред и объектов,	исследования;		
лазерных	методы лазерно-		
медицинских	физических		
технологий и	измерений		
технологий обработки	-		
материалов;			
оптических			
информационных			
технологий;			
разработка лазерных			
приборов и			
технологических			
систем различного			
назначения			
проведение			
оптических,			
фотометрических,			
электрических			
измерений с выбором			
технических средств и			
обработкой			
результатов;			
оформление отчетов,			
статей, рефератов на			
базе современных			
_			
средств			
редактирования и			
печати в соответствии			
с установленными			
требованиями	Пр оности	ПУ 1 2 [1] опособои	3-ПК-1.3[1] - Знать:
формулирование	процессы	ПК-1.3 [1] - способен	
задачи и плана	взаимодействия	применять знания	основы лазерной
научного	лазерного	основ лазерной	спектроскопии, в том
исследования в	излучения с	спектроскопии, в том	числе высокого
области лазерной	веществом,	числе высокого	спектрального и
физики, техники и	включая	спектрального и	временного
лазерных технологий	биологические	временного	разрешения;
на основе проведения	объекты; лазерные	разрешения;	физические эффекты
библиографической	приборы, системы и	физических эффектов	при распространении
работы с применением	технологии	при распространении	лазерного излучения в
современных	различного	лазерного излучения в	нелинейных и
информационных	назначения;	нелинейных и	диспергирующих
технологий;	процессы	диспергирующих	средах; физические
построение	генерации,	средах; физических	основы
математических	усиления,	основ взаимодействия	взаимодействия
моделей объектов	модуляции,	лазерного излучения с	лазерного излучения с
исследования, выбор	распространения и	металлами,	металлами,
алгоритма решения	детектирования	диэлектриками и	диэлектриками и
задачи; теоретические	лазерного	полупроводниками,	полупроводниками,

и экспериментальные излучения; биологическими биологическими исследования в элементная база тканями; принципов и тканями; принципы и области физики лазерной техники, методов когерентнометоды когерентнолазеров, технологий и оптических оптических взаимодействия систем управления преобразований, преобразований, лазерного излучения с хранения и обработки хранения и обработки и транспорта веществом, лазерных лазерного оптической оптической технологий: излучения; информации при информации; разработке лазерных У-ПК-1.3[1] - Уметь: разработка методов математические лазерной диагностики систем и модели объектов применять знания сред и объектов, исследования; инновационных основ лазерной лазерных методы лазернолазерных технологий спектроскопии, в том физических медицинских числе высокого технологий и измерений Основание: спектрального и технологий обработки Профессиональный временного стандарт: 29.004 материалов; разрешения; физических эффектов оптических информационных при распространении технологий; лазерного излучения в разработка лазерных нелинейных и приборов и диспергирующих технологических средах; физических систем различного основ взаимодействия лазерного излучения с назначения проведение металлами, оптических, диэлектриками и фотометрических, полупроводниками, электрических биологическими измерений с выбором тканями; принципов и технических средств и методов когерентнообработкой оптических результатов; преобразований, оформление отчетов, хранения и обработки статей, рефератов на оптической базе современных информации при разработке лазерных средств редактирования и систем и печати в соответствии инновационных с установленными лазерных технологий; требованиями В-ПК-1.3[1] - Владеть: навыками решения задач, связанных с разработкой лазерных систем и инновационных лазерных технологий ПК-1.4 [1] - способен процессы 3-ПК-1.4[1] - Знать: формулирование задачи и плана взаимодействия основные методы ставить научного лазерного экспериментальные экспериментальных исследования в излучения с задачи и проводить исследований с области лазерной веществом, экспериментальные применением лазеров, физики, техники и исследования в области методы сбора и включая

лазерных технологий на основе проведения библиографической работы с применением современных информационных технологий; построение математических моделей объектов исследования, выбор алгоритма решения задачи; теоретические и экспериментальные исследования в области физики лазеров, взаимодействия лазерного излучения с веществом, лазерных технологий; разработка методов лазерной диагностики сред и объектов, лазерных медицинских технологий и технологий обработки материалов; оптических информационных технологий; разработка лазерных приборов и технологических систем различного назначения проведение оптических, фотометрических, электрических измерений с выбором технических средств и обработкой результатов; оформление отчетов, статей, рефератов на базе современных средств редактирования и печати в соответствии с установленными

биологические объекты; лазерные приборы, системы и технологии различного назначения; процессы генерации, усиления, модуляции, распространения и детектирования лазерного излучения; элементная база лазерной техники, технологий и систем управления и транспорта лазерного излучения; математические модели объектов исследования; методы лазернофизических измерений

взаимодействия излучения с веществом, лазерной диагностики и лазерных технологий; применять современные средства измерений, средства управления экспериментом, сбора и обработки данных

Основание: Профессиональный стандарт: 29.004

обработки данных; У-ПК-1.4[1] - Уметь: ставить экспериментальные задачи и проводить экспериментальные исследования в области взаимодействия излучения с веществом, лазерной диагностики и лазерных технологий; применять современные средства измерений, средства управления экспериментом, сбора и обработки данных; В-ПК-1.4[1] - Владеть: навыками проведения экспериментальных исследований в области лазерной физики и лазерных технологий, применения современных средств измерений

требованиями формулирование ПК-2 [1] - способен 3-ПК-2[1] - Знать: процессы задачи и плана взаимодействия разрабатывать численные методы научного лазерного математические модели анализа объектов исследования в излучения с объектов исследования исследования; области лазерной веществом, и выбирать численный стандартные языки физики, техники и включая метод их программирования; лазерных технологий биологические моделирования стандартные и (анализа), на основе проведения объекты; лазерные специальные пакеты библиографической приборы, системы и разрабатывать новый математического работы с применением технологии или выбирать готовый моделирования; ; современных алгоритм решения У-ПК-2[1] - Уметь: различного информационных задачи поставить задачу и назначения; технологий; определить набор процессы построение Основание: параметров, с учётом генерации, математических усиления, Профессиональный которых должно быть стандарт: 29.004 моделей объектов модуляции, проведено исследования, выбор распространения и моделирование алгоритма решения детектирования процессов, явлений задачи; теоретические лазерного лазерной техники и и экспериментальные излучения; технологий; исследования в элементная база разрабатывать области физики простые и средней лазерной техники, лазеров, технологий и сложности взаимодействия систем управления математические лазерного излучения с и транспорта модели лазерных веществом, лазерных лазерного технологических технологий; излучения; процессов и модели разработка методов математические функционирования лазерной диагностики модели объектов лазерных приборов и сред и объектов, систем; анализировать исследования; лазерных методы лазернополученные медицинских физических результаты измерений моделирования технологий и технологий обработки процессов, явлений на основе физических материалов; представлений; оптических информационных В-ПК-2[1] - Владеть: технологий; навыками разработка лазерных компьютерного приборов и моделирования технологических процессов, явлений лазерной техники и систем различного технологий назначения проведение оптических, фотометрических, электрических измерений с выбором технических средств и обработкой результатов;

оформление отчетов,		
статей, рефератов на		
базе современных		
средств		
редактирования и		
печати в соответствии		
с установленными		
требованиями		

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

TA C.	TT		i, na oobem, e	. ,	- 1 1		
No	Наименование			**	•	•	
п.п	раздела учебной		e H	МC	Ä,	*2	
	дисциплины		Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	ы 11
			Лекции/ Пря (семинары)/ Лабораторні работы, час.	ек , (ф	JIB a34	Аттестация раздела (фо неделя)	Индикаторы освоения компетенции
		_	a/] ap; it0 i, y	. T JIB	ма 1 р	ац ((ат ия ен
		Недели	цин ин рра	Обязат. контро. неделя)	СИ 38	Аттеста раздела неделя)	Индикат освоения компетен
		эде	:кі :мі :бо) НТ Де	ak E	7Те 3д де	НДН ВО МІ
		H	Ле (се Ла ра	О(ко не	M 6a	Ал ра не	Ил 00 ко
	2 Семестр						
1	Часть 1	1-8	8/8/0		25	КИ-8	3-ПК-1.2,
							У-ПК-1.2,
							В-ПК-1.2,
							3-ПК-1.3,
							У-ПК-1.3,
							В-ПК-1.3,
							,
							3-ПК-1.4,
							У-ПК-1.4,
							В-ПК-1.4,
							3-ПК-2,
							У-ПК-2,
							В-ПК-2
2	Часть 2	9-15	7/7/0		25	КИ-15	3-ПК-1.2,
							У-ПК-1.2,
							В-ПК-1.2,
							3-ПК-1.3,
							У-ПК-1.3,
							В-ПК-1.3,
							3-ПК-1.4,
							У-ПК-1.4,
							В-ПК-1.4,
							3-ПК-2,
							У-ПК-2,
							В-ПК-2
	Итого за 2 Семестр		15/15/0		50		D IIIC 2
	Контрольные				50	3	3-ПК-1.2,
	мероприятия за 2				-		У-ПК-1.2,
	Семестр						В-ПК-1.2,
	Comocip						3-ПК-1.3,
							У-ПК-1.3,
							у-пк-1.3, В-ПК-1.3,
							D-11K-1.5,

		T	ı	I		
						3-ПК-1.4,
						У-ПК-1.4,
						В-ПК-1.4,
						3-ПК-2,
						У-ПК-2,
						В-ПК-2
	3 Семестр					
1	Часть 1	1-8	8/8/0	25	КИ-8	3-ПК-1.2,
						У-ПК-1.2,
						В-ПК-1.2,
						3-ПК-1.3,
						У-ПК-1.3,
						В-ПК-1.3,
						3-ПК-1.4,
						У-ПК-1.4,
						В-ПК-1.4,
						3-ПК-2,
						У-ПК-2,
						В-ПК-2
2	Часть 2	9-16	8/8/0	25	КИ-16	3-ПК-2,
						У-ПК-2,
						В-ПК-2,
						3-ПК-1.2,
						У-ПК-1.2,
						В-ПК-1.2,
						3-ПК-1.3,
						У-ПК-1.3,
						В-ПК-1.3,
						3-ПК-1.4,
						У-ПК-1.4,
						В-ПК-1.4
	Итого за 3 Семестр		16/16/0	 50		
	Контрольные			50	Э	3-ПК-1.2,
	мероприятия за 3					У-ПК-1.2,
	Семестр					В-ПК-1.2,
						3-ПК-1.3,
						У-ПК-1.3,
						В-ПК-1.3,
						3-ПК-1.4,
						У-ПК-1.4,
						В-ПК-1.4,
						3-ПК-2,
						У-ПК-2,
						В-ПК-2

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

КИ	Контроль по итогам
3	Зачет
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Лек., Пр./сем., Лаб.,			
		час.	час.	час.		
	2 Семестр	15	15	0		
1-8	Часть 1	8	8	0		
1	І. Непрерывный режим генерации лазеров. Высокое	Всего	аудиторных	часов		
	спектральное разрешение.	1	1	0		
	Лазеры и новые возможности спектроскопии. Некоторые	Онлай	H			
	методы долазерной спектроскопии (атомные пучки,	0	0	0		
	квантовые биения, эффект Ханле, оптическая накачка и					
	двойной радио-оптический резонанс).					
2	І. Непрерывный режим генерации лазеров. Высокое	Всего	 аудиторных	Hacon		
2		1	тудиторных Г₁	0		
	спектральное разрешение.	1		IU		
	Интерферометр Фабри Перо. Добротность, резкость,	Онлай	1			
	резонансные частоты, ширина линии моды резонатора.	0	0	0		
2	Применения.	D				
3	І. Непрерывный режим генерации лазеров. Высокое	Всего	аудиторных			
	спектральное разрешение.	1	1	0		
	Ширина линии генерации одномодовогогазового Не-	Онлайн				
	Nелазера, работающего в непрерывном режиме в	0	0	0		
	пренебрежении техническими шумами. Мощность					
	спонтанного излучения в моду.					
4	І. Непрерывный режим генерации лазеров. Высокое		аудиторных	1		
	спектральное разрешение.	1	1	0		
	Перестраиваемые лазеры. Основные типы активных сред.	Онлай				
	Однородно- и неоднородно уширенная линии усиления.	0	0	0		
5	І. Непрерывный режим генерации лазеров. Высокое	Всего аудиторных часов				
	спектральное разрешение.	1	1	0		
	Типы селективных элементов. Методы селекции мод	Онлай	H			
	резонатора по всем четырем индексам.Методы	0	0	0		
	перестройки частоты генерации.					
6	І. Непрерывный режим генерации лазеров. Высокое	Всего	<u> </u> аудиторных	часов		
	спектральное разрешение.	1	1	0		
	Многообразие структур полупроводниковых	Онлай	H			
	инжекционных лазеров. Роль волноводного эффекта.	0	0	0		
	Оптические нелинейности активной среды и особенности					
	спектральных и динамических характеристик диодных					
	лазеров.					
7	І. Непрерывный режим генерации лазеров. Высокое	Всего	аудиторных	часов		
	спектральное разрешение.	1	1	0		
	Межмодовый интервал, групповая скорость, плотность	Онлай	H			

	энергии, добротность резонатора диодного лазера. Фактор Богатова-Генри.	0	0	0
8	І. Непрерывный режим генерации лазеров. Высокое	Всего	аудиторн	ных часов
	спектральное разрешение.	1	1	0
	Ширина линии генерации диодных лазеров и методы ее	Онлай	H	
	уменьшения. Типы и характеристики диодных лазеров с внешним резонатором.	0	0	0
9-15	Часть 2	7	7	0
9	II. Внутридоплеровская спектроскопия.	Всего	аудиторн	ных часов
	Основы классификации атомных спектров.	1	1	0
	Характеристики резонансных линий атомов щелочных	Онлай	H	•
	металлов. Механизмы уширения атомных линий. Эффект	0	0	0
	Дике. Оптические уравнения Блоха (начало			
10	II. Внутридоплеровская спектроскопия .	Всего	аудиторн	ных часов
	Внутридоплеровская спектроскопия. Механизмы	1	1	0
	насыщения в двухуровневой и многоуровневых атомных	Онлай	Н	·
	системах. Параметр насыщения. Частота Раби. Оптические уравнения Блоха (конец)	0	0	0
11	II. Внутридоплеровская спектроскопия.	Всего	аудиторн	ных часов
	Провал Лэмба. Внутридоплеровские резонансы.	1	1	0
	Перекрестные резонансы. Методы устранения	Онлай	Н	
	доплеровского фона.	0	0	0
12	II. Внутридоплеровская спектроскопия.	Всего	аудиторн	ных часов
	Поляризационные методы внутридоплеровской		1	0
	спектроскопии. Интерференционные и гетеродинные	Онлай	Н	
	методы.	0	0	0
13	II. Внутридоплеровская спектроскопия.	Всего	аудиторн	ных часов
	Двухфотонная спектроскопия.	1	1	0
		Онлай	H	•
		0	0	0
14	II. Внутридоплеровская спектроскопия.	Всего	аудиторн	ных часов
	Подавление доплеровского уширения при ускорении	1	1	0
	ионных пучков. Селективное зеркальное отражение.	Онлай	H	I
		0	0	0
15	II. Внутридоплеровская спектроскопия.	Всего	 аудиторн	ных часов
	Ограничения спектрального разрешения. Метод	1	1	0
	разнесенных полей в радиочастотной и оптической	Онлай	Н	I
	областях спектра. Расщепление линии из-за эффекта	0	0	0
	отдачи. Охлаждение и захват в ловушки атомов как метод			
	подавления Доплеровского эффекта			
	3 Семестр	16	16	0
1-8	Часть 1	8	8	0
1	Импульсный режим генерации лазеров. Высокое	Всего	аудиторн	ных часов
	временное разрешение	1	1	0
	Методы формирования коротких лазерных импульсов.	Онлай	H	ı
	Модуляция добротности. Методы синхронизации мод.	0	0	0

2	Импульсный режим генерации лазеров. Высокое	Всего	аудиторн	ых часов	
	временное разрешение	1	1	0	
	Методы генерации ультракоротких фемтосекундных	Онлай	íн	•	
	импульсов.	0	0	0	
3	Импульсный режим генерации лазеров. Высокое	Всего	аудиторн		
	временное разрешение	1	1	0	
	Методы измерения длительностии усиления коротких	Онлай	<u> </u>	10	
	импульсов.	0	0	0	
	Pump-probe метод.	U	U	0	
	т итр-ргоос метод.				
4	Импульсный режим генерации лазеров. Высокое	Всего	аудиторн	I IV HACOD	
т	временное разрешение	1	1	0	
		0	<u> 1</u>	10	
	Нестационарные интерференционные эффекты в лазерной	Онлай	_		
	спектроскопии. Фотонное эхо. Интерференция различных	0	0	0	
	колебательных мод в молекулах.	D			
5	Импульсный режим генерации лазеров. Высокое	Всего	аудиторн		
	временное разрешение	1 1 0 Онлайн			
	Генератор гребенки частот и его метрологические		1		
	применения. Спектральное и временное разрешение «в	0	0	0	
	одном флаконе»				
6	Импульсный режим генерации лазеров. Высокое	Всего	аудиторн		
	временное разрешение	1	1	0	
	Торможение атомов в пучке. Обеспечение цикличности	Онлайн			
	взаимодействия.		0	0	
	Методы компенсации доплеровского сдвига				
7	Лазерное охлаждение атомов		аудиторн	ых часов	
	Охлаждение атомов во встречных пучках. Оптическая	1	1	0	
	меласса. Доплеровский предел.		íн		
		0	0	0	
8	Лазерное охлаждение атомов	Всего	аудиторн	ых часов	
	Магнито-оптическая ловушка. Магнитные ловушки.	1	1	0	
		Онлай			
		0	0	0	
9-16	Часть 2	8	8	0	
9	Лазерное охлаждение атомов		аудиторн		
	Механизмы субдоплеровского охлаждения. Сизифово	1	1	0	
	охлаждение.	Онлай	<u> 1</u>	10	
	оллаждение.		1	0	
		0	0	0	
10	Лазерное охлаждение атомов	Page	ОМПИТОМИ	I IV HOCOR	
10	-		аудиторн		
	Метод охлаждения, основанный на селективном по	1	, <u>l</u>	0	
	скоростям	Онлай			
	когерентном пленении населенностей. Испарительное	0	0	0	
	охлаждение				
1.1	TT.	-			
11	Лазерное охлаждение атомов		аудиторн		
	Бозе конденсат в разреженных ансамблях атомов Rb и Na.	1	1	0	
	Резонанс Фешбаха. Бозе конденсат атомов цезия.	Онлай			
	Получение вырожденного Ферми газа. Бозе конденсат		0	0	
	получение вырожденного ферми газа. возе конденсат	0	U	U	

12	Лазерное охлаждение атомов	Всего	аудитор	ных часов
	Эволюция стандартов частоты оптического и	1	1	0
	микроволнового	Онла	йн	
	диапазонов. Захват охлажденных атомов в ловушках –	0	0	0
	решетках.			
	Магическая длина волны.			
13	Лазерное охлаждение атомов	Всего	аудитор	ных часов
	Резонанс Фешбаха.	1	1	0
		Онла	йн	
		0	0	0
14	Лазерное охлаждение атомов	Всего	аудитор	ных часов
	Бозе конденсация атомов Цезия	1	1	0
		Онла	йн	•
		0	0	0
15 - 16	Лазерное охлаждение атомов	Всего аудиторных часов		
	Вырожденные Ферми газы.	2	2	0
		Онла	йн	•
		0	0	0

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия и самостоятельная работа студентов, заключающаяся в изучении оригинальных статей по теме и представлении кратких докладов по изученным статьям. Важную роль играют и вопросы, задаваемые в процессе лекций. Поскольку данный курс читается на первом курсе магистратуры, целесообразно знать темы учебно-исследовательской работы (УИР) студентов и задавать им индивидуально вопросы по тем разделам лазерной спектроскопии, которые связаны с темой их УИР.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы	Аттестационное	Аттестационное
	освоения	мероприятие (КП 1)	мероприятие (КП 2)
ПК-1.2	3-ПК-1.2	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	У-ПК-1.2	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	В-ПК-1.2	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
ПК-1.3	3-ПК-1.3	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	У-ПК-1.3	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	В-ПК-1.3	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
ПК-1.4	3-ПК-1.4	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	У-ПК-1.4	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	В-ПК-1.4	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
ПК-2	3-ПК-2	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	У-ПК-2	3, КИ-8, КИ-15	Э, КИ-8, КИ-16
	В-ПК-2	3, КИ-8, КИ-15	Э, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	7	С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного

	материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить
	обучение без дополнительных занятий по
	соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ К 44 Квантовая и оптическая электроника: , Киселев Г. Л., Санкт-Петербург: Лань, 2022
- 2. 535 Д31 Лазерная спектроскопия : основные принципы и техника эксперимента, Демтрёдер В., Москва: Наука, 1985
- 3. ЭИ Б 82 Лазеры: применения и приложения: , Ивакин С. В. [и др.], Санкт-Петербург: Лань, 2022
- 4. ЭИ Л 22 Оптика: учебное пособие, Ландсберг Г. С., Москва: Физматлит, 2021
- 5. ЭИ Ф 90 Оптические спектры атомов: , Фриш С. Э., Санкт-Петербург: Лань, 2022
- 6. ЭИ К 85 Фемтосекундные импульсы. Введение в новую область лазерной физики : , Крюков П. Г., Москва: Физматлит, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 535 С42 Квантовая оптика: , Скалли М.О., Зубайри М.С., М.: Физматлит, 2003
- 2. 539.1 Л17 Лазерная спектроскопия атомов и молекул:, , М.: Мир, 1979
- 3. 621.37 K85 Лазеры ультракоротких импульсов и их применения : учебное пособие, Крюков П.Г., Долгопрудный: Интеллект, 2012
- 4. 535 Н49 Нелинейная спектроскопия:, , М.: Мир, 1979
- 5. 535 Д31 Современная лазерная спектроскопия : учебное пособие, Демтрёдер В., Долгопрудный: Интеллект, 2014
- 6. 621.37 К85 Фемтосекундные импульсы : введение в новую область лазерной физики, Крюков П.Г., Москва: Физматлит, 2008

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Для успешного освоения курса необходимо повторить такие разделы физики: теория высокодобротных колебательных систем, классический осциллятор, взаимосвязь действительной и мнимой частей показателя преломления, основы лазерной физики и атомной спектроскопии. Среди типов лазеров особенно важно знакомство с методами формирования инверсии и пространственной организации активной среды лазеров на красителях, центрах окраски, титан-сапфире и александрите, волоконных и полупроводниковых лазеров. В атомной спектроскопии необходимо понимание спектров атомов щелочных и щелочноземельных металлов. Среди задач квантовой механики важна задача о взаимодействии двухуровневого атома с резонансным электромагнитным полем.

Критичными для усвоения курса являются следующие вопросы:

- Теория спектральной ширины линии генерации одномодовых лазеров.
- Влияние насыщения усиления на динамические характеристики одномодовых лазеров. Предельный цикл.
 - Особенности динамических и спектральных свойств полупроводниковых лазеров.
 - Методы перестройки частоты лазеров.
 - Формирование провала Беннета.
 - Формирование внутридоплеровского резонанса в двухуровневом атоме.
 - Механизмы, приводящие к уширению внутридоплеровского резонанса.
- Формирование внутридоплеровского резонанса в трехуровневом атоме. Перекрестный резонанс.
 - Три типа механизмов насыщения в атомах щелочных металлов
 - Поляризационная спектроскопия
 - Двухфотонная спектроскопия

В части курса, посвященной спектроскопии высокого временного разрешения, следует особое внимание уделить методам синхронизации мод, сопоставлению оптических нелинейностей, включая Керровскую, поддерживающих генерацию ультракоротких импульсов, и процессам ограничивающим минимальную длительность импульсов лазерного излучения. Важно освоить ряд примеров применения коротких импульсов в методе «накачказондирование» ("ритрргове"). Для лучшего усвоения этих примеров имеет смысл повторить основу систематики молекулярных спектров.

Если представление о дискретности энергетических уровней квантовых систем с финитным движением обычно надежно усвоено студентами к последнему семестру, то с практическими примерами проявления принципа суперпозиции квантовых состояний дело, как правило, обстоит хуже. Полезно проследить в курсе эффекты, обусловленные интерференцией: внутренних состояний атомов и молекул (квантовые биения); различных типов колебаний в

молекулах (волновые пакеты), атомов в атомных интерферометрах; ансамблей атомов, являющихся ломтиками одного бозе-конденсата.

Лекции по лазерному охлаждению атомов с одной стороны дают возможность повторить такие разделы физики как классическая механика (даже на школьном уровне), статистическая физика, квантовая механика, с другой - знакомят с современными методами активной лазерной спектроскопии, которая позволяет управлять внутренними и внешними степенями свободы атомных ансамблей.

Для успешного освоения курса особенно важно понимать: методы обеспечения цикличности взаимодействия атомов с лазерным излучением; механизм диффузии атомов в пространстве импульсов из-за спонтанного излучения; принцип работы ловушек охлажденных атомов (вязкой, магнито-оптической, чисто магнитной, чисто оптической) эффекты оптической накачки и светового сдвига уровней в переменном поле лазерного излучения (динамический Штарк эффект); роль упругих и неупругих столкновений в процессе испарительного охлаждения; специфику резонансного рассеяния атомов при ультранизких температурах. Успешная сдача экзамена предполагает знание условий возникновения вырожденных газов, наиболее серьезных препятствий на пути их создания и экспериментальных методов преодоления этих препятствий и формирования Бозе и Ферми газов. По материалам последней лекции необходимо достичь понимания последних направлений развития метрологии частоты и времени.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

В первой части первой половины курса напоминается о роли спектроскопии в науке (опыт Майкельсона \rightarrow СТО; спектр излучения черного тела \rightarrow h: линейные атомные спектры \rightarrow квантовая механика; Лэмбовский сдвиг \rightarrow квантовая электродинамика; красное смещение \rightarrow постоянная Хаббла, космология; метрологиия \rightarrow секунда, метр; спектроскопия неравновесных состояний \rightarrow лазеры).

Во второй — обсуждается роль лазеров в спектроскопии: узость линии — высокое спектральное разрешение; огромная спектральная плотность — нелинейная спектроскопия; сочетание монохроматичности и высокой интенсивности — внутридоплеровская спектроскопия; синхронизация мод — ультракороткие импульсы (УКИ) — сверхвысокое временное разрешение — метрология частоты и времени; пространственная когерентность — фокусировка — гигантские поля—; физика плазмы, лазерный термояд; малая расходимость — зондирование атмосферы; управление внутренними степенями свободы квантовых систем — оптическая накачка, стандарты частоты, магнитометры; управление внешними степенями свободы атомов — охлаждение, захват атомов в ловушки, синтез вырожденных газов (Бозе и Ферми); стандарт частоты на ядерном переходе («ториевый проект»)

Половина лекций курса описывает основные характеристики лазеров важные для спектроскопии высокого разрешения. Вторая половина представляет основные методы внутридоплеровской спектроскопии.

Курс начинается с напоминания взаимосвязи параметров высокодобротных систем. Далее следует вывод предельной ширины линии генерации одночастотного лазера, работающего в непрерывном устойчивом режиме. Здесь особое внимание следует уделить поведению лазерного поля на фазовой плоскости в системе координат, вращающейся на оптической частоте. Следует дать вывод существования предельного цикла и отметить

существование отрицательной обратной связи для амплитуды поля и отсутствии ее для фазы. При описании шумовых характеристик лазеров важно подробно остановиться на особенностях шумов диодного лазера — доминировании в них квантовых флуктуаций. На фазовой плоскости удобно дать качественное объяснение фактора Генри-Богатова, ответственного за дополнительное уширение линии генерации диодных лазеров. При описании методов сужения линии ДЛ следует указать, что внешняя обратная связь, подавляя фазовые флуктуации, обусловленные спонтанным шумом в моду, делают доминирующим технический шум, нивелируя отличие диодных лазеров от всех прочих. Методы селекции мод и требование к согласованному изменению их частот и рабочей моды являются важной заключительной частью этой части лекций.

В лекциях по внутридоплеровской спектроскопии особенно важно убедиться, что студенты не путают существование Бенеттовского провала (одна бегущая волна) с наблюдаемым внутридоплеровским резонансом в геометрии встречных волн и добиться понимания механизмов образования собственных и перекрестных резонансов. Следует обсудить способы наблюдения резонансов без доплеровского фона. Перед лекцией о поляризационной спектроскопии имеет смысл напомнить на примере классического осциллятора о связи действительной и мнимой частей восприимчивости (поглощения и показателя преломления). При изложении материала по двухфотонной спектроскопии важно провести ее сопоставление с однофотонной.

Первые пять занятий второго семестра посвящены лазерной спектроскопии высокого временного разрешения.. Отчасти это оправдано тем, что в курсе «Теоретическая квантовая электроника», наоборот больше внимания уделяется ультракоротким импульсам. В этих занятиях кратко рассмотрены способы формирования и усиления коротких импульсов и некоторые их применения. В сжатой форме дается напоминание классификации молекулярных термов. Особое внимание уделяется сопоставлению уравнений Блоха для магнитного резонанса и оптических уравнений Блоха, обсуждаются квантовые биения, волновые пакеты, фотонное эхо, метрологическое применение гребенки частот.

Далее следуют занятия по лазерному охлаждению атомов. Эта тема охватывает и дает возможность повторить многие разделы физики. Имеет смысл напомнить, что низкая энергия атомов в ансамбле еще не означает, что ему можно приписать определенную температуру. Важно обеспечить понимание условий цикличности взаимодействия охлаждаемых атомов с лазерным излучением. Полезно детально сопоставить зеемановский способ замедления атомов в пучках и способ, основанный на подстройке частоты лазера. Важно обратить внимание на то, что в таких процессах замедления продольной скорости атомов в пучке происходит одновременное увеличение энергии в поперечных степенях свободы. Желательно детально обсудить механизмы: работы вязкой ловушки (баланс скорости доплеровского охлаждения и разогрева за счет диффузии в пространстве импульсов) и образования консервативной силы в магнито-оптической ловушке. Здесь следует подчеркнуть роль сохранения проекции магнитного момента атома на направление магнитного поля при движении атома в неоднородном магнитном поле ловушки. Перед изложением субдоплеровского (Сизифова) охлаждения необходимо подробно остановиться на световых сдвигах. Кроме Сизифова охлаждения описать целый ряд применений эффекта Штарка в переменном поле (он же и световой сдвиг). Обсудить роль задержки оптической накачки и градиента поляризации в Сизифовом охлаждении.

Знакомство со способами создания вырожденных разреженных газов следует начать с условий их возникновения, особенностей столкновительных процессов при низких

температурах. Желательно подробно обсудить первые эксперименты по созданию Бозе кондесатов в рубидии и натрии. Отметить проблему нарушения адиабатичности в центре магнитной ловушки. Важно объяснить, почему интерес исследователей последовательно переключался от магнитооптических ловушек к чисто магнитным, а затем — к чисто оптическим. Дать понятие о резонансе Фешбаха, обсудить способ управления длиной рассеяния магнитным полем. Кратко обсудить направление работ последнего десятилетия (вырожденные Ферми газы, Бозе-конденсация молекулярного газа).

На последнем занятии можно рассказать о применениях глубоко охлажденных атомов: о стандарте частоты СВЧ диапазона на атомном фонтане; о стандарте частоты оптического диапазона захваченных в решетке стоячей магической длины волны; о перспективах нового определения секунды; о возможности создания стандарта частоты на ядерном переходе в тории.

Автор(ы):

Величанский Владимир Леонидович, к.ф.-м.н.

Рецензент(ы):

д.ф.м.н., профессор Проценко Е.Д.