Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА ФИЗИКИ КОНДЕНСИРОВАННЫХ СРЕД

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 4

от 23.07.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ТЕХНОЛОГИЯ МАТЕРИАЛОВ ЭЛЕКТРОННОЙ ТЕХНИКИ

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
5	3	108	32	16	16		44	0	3
Итого	3	108	32	16	16	15	44	0	

АННОТАЦИЯ

В условиях современного производства повышенные требования к технологии материалов электронной техники требуют глубокого изучения закономерностей протекания отдельных процессов, включая их

математическое описание В данной дисциплине будут изучены основные технологии получения монокристаллов, тонких пленок, порошковых и некристаллических материалов электронной техники.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Знание студентами теоретических положений и получение практических навыков в области технологии материалов электронной техники позволяет студентам университета быстро включиться в производственную деятельность по проведению разнообразных экспериментов и решать практические задачи.

Учитывая большое значение кинетических закономерностей при математическом описании технологических процессов, целями освоения дисциплины являются изучение основных положений термодинамики необратимых процессов, позволяющич учитывать взаимное влияние сопутствующих процессов переноса. Протеканием многих процессов в движущейся среде определена необходимость рассмотрения основных законов газодинамики и понимание процессов тепло- и массообмена в движущейся среде и использование их при

рассмотрении задач конвективной диффузии и термокинетики.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина предполагает успешное освоение студентом следующих курсов:

- Высшая математика
- Химия
- -Физическая химия

Результатом освоения учебной дисциплины является формирование знаний и практических навыков по технологическим процессам в производстве материалов электронной техники. Студент, успешно прошедший данную диссциплину обладает необходимым минимумом знаний для понимания принципов производства материалов электронной техники, построения простейшего технологического маршрута; знает методы анализа свойств полупроводниковых и диэлектрических материалов, а также важнейших классов некристаллических материалов; может успешно работать в качестве инженера-технолога на любом этапе производственного процесса.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-	исследовательский	
математическое моделирование электронных приборов, схем и устройств различного функционального назначения на базе стандартных пакетов автоматизированного проектирования; участие в планировании и проведении экспериментов по заданной методике, обработка результатов с применением современных информационных технологий и технических средств; анализ научнотехнической информации, отечественного и зарубежного опыта по тематике исследования; организация защиты объектов интеллектуальной собственности и результатов исследований и разработок как коммерческой тайны предприятий	электронные приборы, устройства, установки, методы их исследования, математические модели	ПК-2 [1] - Способен к экспериментальной проверке выбранных технологических решений производства приборов и исследованию параметров наноструктурных материалов в соответствии с утвержденной методикой, к разработке методик и техническому руководству экспериментальной проверкой технологических процессов и исследованием параметров наноструктурированных материалов Основание: Профессиональный стандарт: 40.104	3-ПК-2[1] - Знания в области материаловедения наноструктурированных материалов.; У-ПК-2[1] - Умение экспериментально исследовать параметры наноструктурированных материалов; В-ПК-2[1] - Владение современными нанотехнологиями и методиками измерений в области микро- и наноэлектроники.
	производст	венно-технологический	
внедрение результатов исследований и	материалы, компоненты, электронные	ПК-8 [1] - Способен выполнять постановку и эксплуатацию	3-ПК-8[1] - Знание технологий сверхбольших

разработок в производство; выполнение работ по технологической подготовке производства материалов и изделий электронной техники; проведение технологических процессов производства материалов и изделий электронной техники; контроль за соблюдением технологической дисциплины и приемов энерго - и ресурсосбережения; подготовка документации и участие в работе системы менеджмента качества на предприятии; организация метрологического обеспечения производства материалов и изделий электронной техники внедрение результатов исследований и

приборы, устройства, установки, методы их исследования, проектирования и конструирования, технологические процессы производства, диагностическое технологическое оборудование, алгоритмы решения типовых задач

определенного технологического процесса или блока технологических операций по производству материалов и изделий электронной техники

Основание: Профессиональный стандарт: 29.005, 29.008 интегральных схем, планарных и иных технологий электроники и наноэлектроники; У-ПК-8[1] - Умение выполнять постановку и эксплуатацию определенного технологического процесса или блока технологических операций по производству СБИС, интегральных СВЧсистем и других изделий электронной техники.; В-ПК-8[1] - Владение технологическими операциями по производству материалов и изделий электронной техники

разработок в производство; выполнение работ по технологической подготовке производства материалов и изделий электронной техники; проведение технологических процессов производства материалов и изделий электронной техники; контроль за соблюдением

материалы, компоненты, электронные приборы, устройства, установки, методы их исследования, проектирования и конструирования, технологические процессы производства, лиагностическое технологическое оборудование, алгоритмы решения типовых

ПК-9 [1] - Способен выполнять определенный тип измерительных или контрольных операций при исследовании параметров полупроводниковых приборов и устройств или в технологическом процессе по производству материалов и изделий электронной техники

Основание: Профессиональный стандарт: 29.002

3-ПК-9[1] - Знание параметров полупроводниковых приборов аналоговой, цифровой, радиочастотной и СВЧэлектроники.; У-ПК-9[1] - Умение выполнять исследования параметров полупроводниковых приборов и устройств в микро- и наноэлектронике; В-ПК-9[1] - Владение методами измерений в технологическом процессе по производству

			7
технологической	задач		материалов и изделий
дисциплины и			электронной техники
приемов энерго - и			
ресурсосбережения;			
подготовка			
документации и			
участие в работе			
системы			
менеджмента			
качества на			
предприятии;			
организация			
метрологического			
обеспечения			
производства			
материалов и изделий			
электронной техники			
внедрение	материалы,	ПК-10 [1] - Способен к	3-ПК-10[1] - Знание
результатов	компоненты,	модернизации	физических основ
исследований и	электронные	существующих и	современных микро- и
разработок в	приборы,	внедрению новых	нанотехнологий,
производство;	устройства,	методов и оборудования	технологий
выполнение работ по	установки,	для измерений	гетероструктурной и
технологической	методы их	параметров	СВЧ-электроники.;
подготовке	исследования,	наноматериалов и	У-ПК-10[1] - Умение
производства	проектирования и	наноструктур	творчески применять
материалов и изделий	конструирования,	10 01	современное
электронной техники;	технологические	Основание:	оборудование для
проведение	процессы	Профессиональный	измерений параметров
технологических	производства,	стандарт: 29.007	наноматериалов и
процессов	диагностическое	1	наноструктур;
производства	И		В-ПК-10[1] - Владение
материалов и изделий	технологическое		методами измерений
электронной техники;	оборудование,		параметров
контроль за	алгоритмы		наноматериалов и
соблюдением	решения типовых		наноструктур
технологической	задач		1, , , 1
дисциплины и	, ,		
приемов энерго - и			
ресурсосбережения;			
подготовка			
документации и			
участие в работе			
системы			
менеджмента			
качества на			
предприятии;			
организация			
метрологического			
обеспечения			
производства			
материалов и изделий			
matephatob ii iisqoiiiii	<u> </u>		

электронной техники						
	инновационно-проектный					
участие в подготовке	устройства,	ПК-17 [1] - Способен	3-ПК-17[1] - Знание			
и подаче заявок по	установки,	оценивать	современных методов			
перспективным	методы их	эффективность	проектирования и			
проектам, грантам в	исследования,	внедрения новых	изготовления			
рамках проводимых	проектирования и	методов и способов	материалов и изделий			
открытых конкурсов;	конструирования,	измерения или	электронной техники;			
участие в разработке	инновационные	проектирования или	У-ПК-17[1] - Умение			
технических	технические	изготовления	оценить эффективность			
требований,	решения в сфере	материалов или изделий	внедрения новых			
технических заданий	базовых	электронной техники	методов изготовления			
по инновационным	постулатов		материалов или изделий			
разработкам; участие	проектирования	Основание:	электронной техники;			
в подготовке		Профессиональный	В-ПК-17[1] - Владение			
отчетной		стандарт: 40.034, 40.104	навыками оценки			
документации по			эффективности			
проектам			внедрения новых			
			способов измерений			
			параметров изделий			
			электронной техники			

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование	профессионального модуля для
	ответственности за	формирования у студентов
	профессиональный выбор,	ответственности за свое
	профессиональное	профессиональное развитие
	развитие и	посредством выбора студентами
	профессиональные	индивидуальных образовательных
	решения (В18)	траекторий, организации системы
		общения между всеми участниками
		образовательного процесса, в том
		числе с использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование навыков	профессионального модуля для
	коммуникации, командной	развития навыков коммуникации,
	работы и лидерства (В20)	командной работы и лидерства,
		творческого инженерного мышления,
		стремления следовать в
		профессиональной деятельности
		нормам поведения, обеспечивающим
		нравственный характер трудовой
		деятельности и неслужебного
		поведения, ответственности за
		принятые решения через подготовку

групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для: - формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рационально-технологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными компетентностными и эмоциональными свойствами членов проектной группы. 1.Использование воспитательного

Профессиональное воспитание

Создание условий, обеспечивающих, формирование ответственности и аккуратности в работе с опасными веществами и при требованиях к нормам высокого класса чистоты (В35)

потенциала профильных дисциплин «Введение в специальность», «Введение в технику физического эксперимента», «Измерения в микрои наноэлектронике», «Информационные технологии в физических исследованиях», «Экспериментальная учебноисследовательская работа» для: формирования навыков безусловного выполнения всех норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в этих организациях, через выполнение студентами практических и лабораторных работ, в том числе с использованием современных САПРов для моделирования

компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ; 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности - формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	5 Семестр						
1	Раздел 1	1-8	16/8/8		25	Кл-8	3-ПК-2, 3-ПК-8, У-ПК-8, 3-ПК-9, В-ПК-9, 3-ПК-10, У-ПК-17, У-ПК-17,
2	Раздел 2	9-16	16/8/8		25	БДЗ-15	У-ПК-2, В-ПК-2, У-ПК-8, В-ПК-8, У-ПК-10
	Итого за 5 Семестр		32/16/16		50		
	Контрольные мероприятия за 5 Семестр				50	3	3-ПК-2, У-ПК-2, В-ПК-2, 3-ПК-8, У-ПК-8, В-ПК-9, У-ПК-9, В-ПК-10, В-ПК-10, 3-ПК-17, В-ПК-17

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
БДЗ	Большое домашнее задание
Кл	Коллоквиум
3	Зачет

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Недели	Темы занятий / Содержание	Лек., час.	Пр./сем.,	Лаб., час.
	5 Семестр	32	16	16
1-8	Раздел 1	16	8	8
1 - 2	ПРОЦЕССЫ ТЕПЛО- И МАССОПЕРЕНОСА		аудиторных	часов
	Потенциальные поля и потоки субстанций	4	2	4
	Взаимосвязанность потоков различных субстанций.	Онлайі		1 -
	Неравновесная	0	0	0
	термодинамика		J	
	Дифференциальные уравнения переноса теплоты			
	Дифференциальное уравнение переноса теплоты в			
	движущейся жидкости			
	Дифференциальное уравнение переноса вещества в			
	движущейся среде			
3	ПРИНЦИП ПОДОБИЯ В ТЕХНОЛОГИЧЕСКИХ	Всего а	<u>.</u> худиторных	часов
	РАСЧЕТАХ	2	0	0
	Критерии подобия	Онлайі	ů.	0
	Процессы конвективной термокинетики	0	0	0
	Процессы конвективного массопереноса			0
	Процессы газодинамики			
	Процессы естественной конвекции			
4	ТЕРМОДИНАМИКА ПРОЦЕССА	Всего а	ц аудиторных	Часов
	КРИСТАЛЛИЗАЦИИ	2	2	0
	Термодинамика процесса кристаллизации веществ из	Онлайі		U
	насыщенных растворов	Онлаин	0	0
	Гомогенное зародышеобразование из пересыщенного пара	0	U	0
	и пересыщенного раствора			
	Гетерогенное зародышеобразование			
	Формы роста и равновесная форма роста кристалла			
5	КИНЕТИКА КРИСТАЛЛИЗАЦИИ.	Всего	ц удиторных	HACOR
3	КРИСТАЛЛИЗАЦИЯ ИЗ РАСТВОРОВ	2	19диторивіх	4
	.Скорость зарождения центров кристаллизации	Онлайі	_	4
	Линейная скорость роста кристаллов	Онлаин	0	0
	Метод «принудительной» кристаллизации	U	U	0
	Постепенная кристаллизация нескольких веществ			
	Объемная «суммарная» скорость кристаллизации			
	Классификация методов выращивания кристаллов из			
	растворов			
	Рост кристаллов из низкотемпературных растворов			
	Гидротермальный рост кристаллов в условиях			
	температурного градиента			
	Аппаратурные оформления методов роста монокристаллов			
6	из растворов	Распо		HOOOD
U	Массоперенос в процессах направленной	2	аудиторных Гэ	0
	кристаллизации монокристаллов			U
	Естественная конвекция в расплаве в процессах	Онлай		
	направленной кристаллизации.	0	0	0
	Естественная конвекция при выращивании			
7	монокристаллов по методу Чохральского.	D		
7	Процессы тепло-и массопередачи на границе раздела		аудиторных Го	
	фаз растущего монокристалла	2	0	0
	1. Баланс масс растущего монокристалла	Онлайі	H	

	2 F			
	2. Баланс тепловых потоков в области кристаллизации	0	0	0
	растущего монокристаллов			
	3. Теплообмен монокристалла с окружающей средой			
	4. Радиальный градиент температуры растущего			
	монокристаллов			
8	Технология роста легированных монокристаллов	Всего	о аудиторі	ных часов
	Равновесный коэффициент распределения примеси	2	2	0
	Распределения примеси в монокристалле при полном	Онла	йн	
	отсутствии перемешивания расплава	0	0	0
	Распределения примеси при полном перемешивании			
	расплава			
	Распределения примеси в монокристалле при неплоском			
	фронте кристаллизации			
9-16	Раздел 2	16	8	8
<i>J</i> -10	ТЕМА 1. ОСОБЕННОСТИ СТЕКЛООБРАЗНОГО	_	о аудиторі	
	состояния, оптические стекла	4	<u> 2</u>	4
	Лекция 1	Онла		4
	,		1	
	1 Особенности стеклообразного состояния и строение	0	0	0
	стекла.			
	Классы стекол			
	2 Физико-химические основы стекловарения			
	3 Стекловарение и его стадии			
	.4 Формирование стекла; отжиг и закалка стекла			
	Лекция 2			
	1 Лазерные и вакуумные стекла			
	2 Светочувствительные стекла: фотохромные и			
	полихромные стекла			
	3 Оптически- и магнитоактивные стекла			
	4 Стеклянные волоконные и пленочные оптические			
	элементы			
	ТЕМА 2. ОСНОВЫ ТЕХНОЛОГИИ	Всего	о аудиторі	ных часов
	КЕРАМИЧЕСКИХ МАТЕРИАЛОВ	2	0	0
	Лекция 3	Онла		J
	1 Подготовка исходных материалов	0	0	0
	2 Составление шихты. Специализированные добавки к	0	U	U
	компонентам			
	херамики			
	3 Формование заготовок керамических изделий			
	4 Спекание. Интенсификация процессов спекания	- D		
	ТЕМА 3 ТЕХНОЛОГИЯ ЛЮМИНЕСЦЕНТНЫХ			ных часов
	материалов	2	2	2
	Лекция 4	Онла		T
	1 Люминесценция. Основные понятия и определения.	0	0	0
	2 Характеристики люминофоров: спектры поглощения,			
	возбуждения, свечения			
	3 Активаторы, соактиваторы, плавни, сенсибилизаторы.			
	Их роль в			
	люминесценции			
	4 Энергетический и квантовый выход люминесценции			
	Технология роста легированных монокристаллов	Всего	avлиторі	ных часов
	1. Равновесный коэффициент распределения примеси	4	2	0
	2. распределение примеси в монокристалле при полном	Онла		10
<u> </u>	2. paenpegenenne nprimeen i monorphetainte npri nomon	OHII	ип	

отсутствии перемешивания расплава	0	0	0
3. Распределение примеси в монокристалле при полном			
перемешивании расплава			
4. Эффективный коэффициент распределения примеси			
5. Распределение примеси при неплоском фронте			
кристаллизации			
6. получение однородно легированных монокристаллов			
Основные особенности технологий роста	Всего а	удиторных	часов
монокристаллов методом направленной	2	2	2
кристаллизации	Онлайн	-I	
1. Методы капиллярного формообразования при росте	0	0	0
монокристаллов			
2. Синтез монокристаллов методом горизонтальной (ГНК)			
или вертикальной направленной кристаллизации			
3. Метод Киропулоса			
4. Зонная плавка			
Технология роста монокристаллов из газовой фазы	Всего а	удиторных	часов
1. Лимитирующая Стадия гетерогенного химического	2	0	0
процесса	Онлайн	Ŧ	
2. Учет потока Стефана в гетерогенных процессах	0	0	0
3. Кинетика процесса кристаллизации монокристлла из			
газовой фазы			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание
	5 Семестр
1 - 3	Получение пористого кремния методом анодирования.
	Цель работы: Получение пористого кремния и изучение его свойств
4 - 8	Выращивание монокристалла из раствора
	Цель работы: Получить монокристалл медного купороса и изучить его свойства.
9 - 12	ИССЛЕДОВАНИЕ ОПТИЧЕСКИХ СВОЙСТВ ОПАЛОПОДОБНЫХ
	ФОТОННЫХ КРИСТАЛЛОВ
	Цель работы: изучение оптических свойств упорядоченных наноструктур,
	ознакомление со свойствами фотонных кристаллов.
13 - 16	Синтез низкотемпературного стекла на основе оксида кремния
	Цель работы: провести синтез стекла и проанализировать его свойства.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При реализации программы используются следующие технологии:

- лекции по курсу традиционного типа, с применением проектора и презентаций по избранным темам;
- семинары практическая работа по решению задач, с опорой на лекционный материал, для наилучшего его усвоения;
 - лабораторные работы студентов;
 - самостоятельная работа студентов

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-10	3-ПК-10	Кл-8
	У-ПК-10	3, Кл-8, БДЗ-15
	В-ПК-10	3
ПК-17	3-ПК-17	3, Кл-8
	У-ПК-17	Кл-8
	В-ПК-17	3, Кл-8
ПК-2	3-ПК-2	3, Кл-8
	У-ПК-2	3, БДЗ-15
	В-ПК-2	3, БДЗ-15
ПК-8	3-ПК-8	3, Кл-8
	У-ПК-8	3, Кл-8, БДЗ-15
	В-ПК-8	3, БДЗ-15
ПК-9	3-ПК-9	3, Кл-8
	У-ПК-9	3
	В-ПК-9	3, Кл-8

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех балльной шкале	Оценка ECTS	Требования к уровню освоению учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе,

	последовательно, четко и логически
	стройно его излагает, умеет тесно
	увязывать теорию с практикой,
	использует в ответе материал
	монографической литературы.
В	Оценка «хорошо» выставляется студенту,
С	если он твёрдо знает материал, грамотно и
•	по существу излагает его, не допуская
-	существенных неточностей в ответе на
D	вопрос.
	Оценка «удовлетворительно»
	выставляется студенту, если он имеет
	знания только основного материала, но не
	усвоил его деталей, допускает неточности,
ительно» Е	недостаточно правильные формулировки,
	нарушения логической
	последовательности в изложении
	программного материала.
	Оценка «неудовлетворительно»
	выставляется студенту, который не знает
	значительной части программного
	материала, допускает существенные
F	ошибки. Как правило, оценка
рительно»	«неудовлетворительно» ставится
	студентам, которые не могут продолжить
	обучение без дополнительных занятий по
	соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- $1.\ 9И\ H\ 50\ Научные$ основы материаловедения стекол : учебное пособие, Немилов С. В., Санкт-Петербург: Лань, 2022
- 2. ЭИ Т 38 Технология материалов электронной техники : учебное пособие (курс лекций), Каргин Н.И. [и др.], Москва: НИЯУ МИФИ, 2023

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Курс включает в себя лекционные, лабораторные и практические занятия. Для успешного освоения курса полезно вспомнить некоторые темы из курса " Физическая химия".

На практических занятиях студенты решают задачи, в том числе и в интерактивной форме (обсуждение). Поощряется активное участие в обсуждении задач, а также умение своевременно задавать вопросы для прояснения всех непонятных моментов по пройденному материалу. Помимо лекционных, лабораторных и семинарских занятий курс включает в себя самостоятельную работу студентов. Данное время отводится для самостоятельной переработки и повторения материала, выполнения домашних заданий, устранения долгов, накопленных во время семестра, а также для самостоятельной подготовки к сдаче теоретического материала . Во время самостоятельной подготовки к сдаче теоретического материала студенты учатся работать с научной литературой.

Итоговые баллы складываются из: 1) результатов коллоквиума и тестового опроса; 2) результатов контроля посещаемости; 3) результатов оценки работы студента в интерактивном режиме.

Получение положительной оценки по каждой проверочной работе (коллоквиум и тестовый опрос) является необходимым условием получения итоговой положительной оценки. В случае пропуска или получения отрицательной оценки самостоятельная работа должна быть переделана и сдана во время зачетной недели в конце семестра. Положительная оценка (аттестация) каждого раздела необходима для допуска к зачету.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

На первом занятии преподаватель:

знакомит студентов с целями и задачами преподаваемой дисциплины, определяет ее место в образовательной программе, обозначает междисциплинарные связи;

обеспечивает согласование содержания и устранение дублирования учебного материала с другими дисциплинами образовательной программы;

уточняет наполнение лекций и планы практических (семинарских) занятий в соответствии с рабочей программой дисциплины, с учетом контингента и уровня подготовки студентов;

рекомендует литературу с выделением основного учебника курса;

доводит до сведения студентов систему оценки знаний.

Занятия по дисциплине «Технология материалов электронной техники» стоят из следующих частей:

- лекции;
- лабораторные работы;
- -семинары;
- самостоятельная работа студентов.

1. Лекционные занятия представляет собой систематическое, последовательное. монологическое изложение преподавателем учебного материала, как правило, теоретического характера. Цель занятий — организация целенаправленной познавательной деятельности студентов по овладению программным материалом по теме.

Структура лекции: вступление, основная часть, заключение.

Во вступлении преподаватель отмечает цель лекции и ее план.

В основной части приводится изложение содержания лекции в строгом соответствии с предложенным планом.

Формат лекции может быть, как очный, так и дистанционный с использованием средств видеоконференцсвязи.

В заключении подводится общий итог лекции, обобщение материала, формулировка выводов по теме лекции; ответы на вопросы студентов.

2. Лабораторные занятия - одна из форм систематических занятий, на которых студенты под руководством преподавателя приобретают практические умения и навыки по проведениям измерений приборов микро- и наноэлектроники, входящей в учебный план.

Цель лабораторных занятий - предоставление возможностей для овладения практическими навыками по технологии МЭТ.

Преподаватель составляет план каждого лабораторного занятия, в который входит:

ознакомление студентов с техникой безопасности данной лаборатории;

описание измерительного стенда, оборудования;

определение целей и задач работы;

теоретического описания объекта исследований;

описание хода выполнения работы;

подбор литературы, рекомендуемой студентам к данной теме.

- 3. На семинарских занятиях студенты решают задачи по темам пройденных лекций с целью закрепленя изученного материала. Преподаватель показывает решение типовой задачи и далее предлагает студентам задачи для самостоятельного решения с проверкой у доски.
- 4. Самостоятельная работа учебная, учебно-исследовательская работа студентов, выполняется во внеаудиторное время по заданию и при методическом руководстве преподавателя. Самостоятельная работа предполагает формирование и усвоение теоретического материала на базе изучения и систематизации материалов учебников, научных публикаций, нормативно-справочных материалов с использованием информационно-поисковых систем, компьютерной сети Интернет.

Роль преподавателя в организации и руководстве самостоятельной работой студентов включает:

четкое планирование содержания и объема самостоятельной работы; организацию, контроль и анализ результатов самостоятельной работы.

В ходе руководства самостоятельной работой студентов преподаватель приобщает их к научному творчеству, поиску и решению актуальных современных проблем. Преподаватель должен обеспечить мотивацию индивидуальной самостоятельной работы студентов посредством проверки промежуточных результатов, консультаций, самопроверки.

Сигловая Наталия Владимировна