Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/0820-573.1

от 31.08.2020 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ВВЕДЕНИЕ В АСТРОФИЗИКУ И КОСМОЛОГИЮ

Направление подготовки (специальность)

14.03.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	2	72	16	32	0	24	0	3
Итого	2	72	16	32	0	24	0	

АННОТАЦИЯ

Целями освоения учебной дисциплины «Введение в астрофизику и космологию» – дать студентам основные представления о структуре Вселенной, физике звезд и их эволюции, астрофизике космических лучей.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины «Введение в астрофизику и космологию» – дать студентам основные представления о структуре Вселенной, физике звезд и их эволюции, астрофизике космических лучей.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина относится к вариативной части Профессионального цикла (Б3.ДВ) и является кур-сом по выбору. Поставлена на 7-й семестр для студентов 40-й и 11-й кафедр. К данному времени студенты уже пройдут спец.курсы необходимые для начала изучения - по квантовой механике, ядерной физике и др. Также, изучение данного курса необходимо для научной работы в рамках НИРС и дипломной работы.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п. п	Наименов ание раздела учебной дисциплин ы	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	7 Семестр						
1	Часть 1	1-8	8/16/0	КИ-8	КИ-8	25	
2	Часть 2	9-16	8/16/0	КИ-16	КИ-16	25	
	Итого за 7		16/32/0			50	
	Семестр						
	Контрольн				3	50	
	ые						
	мероприят						

ия за 7			
Семестр			

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование			
чение				
КИ	Контроль по итогам			
3	Зачет			

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	7 Семестр	16	32	0
1-8	Часть 1	8	16	0
1	Структура современной Вселенной	Всего а	аудиторных	часов
	Единицы измерения в астрономии. Масштабы	2	2	
	астрофизических объектов: звёзды, звёздные скопления,	Онлайн	H	
	галактики и их скопления, обозримая Вселенная, воиды.			
	Характеристики межзвёздной среды, структура Галактики.			
	Структура современной Вселенной.			
2 - 3	Расширяющаяся Вселенная	Всего а	удиторных	часов
	Систематическое красное смещение галактик. Закон	4	4	
	Хаббла. Космологический принцип. Ньютоновская модель	Онлайі	H	
	расширяющейся Вселенной, критическая плотность.			
	Основы ОТО. Уравнения Фридмана эволюции Вселенной.			
	Основные космологические параметры. Стадии эволюции			
	вещества (RD, MD, темная энергия).			
4 - 6	Основы теории образования крупномасштабной		аудиторных	часов
	структуры Вселенной	4	4	
	Теория Джинса. Джинсовская длина и масса. Внутренние	Онлайі	I	
	проблемы теории.			
	Обобщение теории Джинса на случай расширяющейся			
	Вселенной. Теория Боннора			
7	Классификация звезд	Всего а	аудиторных	часов
	Диаграмма Герцшпрунга-Рассела. Главная	2	2	
	последовательность. Красные гиганты, сверхгиганты.	Онлайі	I	_
	Голубые гиганты. Массы, светимости, звездный ветер.			
	Эволюционные треки.			
8 - 9	Основы физики внутреннего строения звезд		аудиторных	часов
	Теория политропных шаров. Уравнения Эмдена.	4	4	
	Уравнения равновесия звезды, основные свойства их	Онлайі	H	
	решения. Энтальпия, теорема вириала для звезд. Более			
	точные уравнения, учет переноса энергии. Характерные			
	времена эволюции звёзд: динамическое, тепловое, ядерное.			
	Эддингтоновский предел.			

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

9-16	Часть 2	8	16	0
9 - 10	Ядерные циклы, нейтринное излучение звезд	Всего	аудиторных	часов
	Скорость термоядерных реакций, фактор Гамова	2	4	
	подбарьерного перехода, S-фактор. Вычисление	Онлай	H	
	характерного времени реакции.	O III, I III I		
	Ядерные реакции звёзд главной последовательности: pp- и			
	СПО-циклы. Спектры солнечных нейтрино. Стандартная			
	солнечная модель.			
11	Релятивистские звезды	Всего	аудиторных	часов
	Уравнение состояние вырожденного электронного газа,	1	2	
	нерелятивистский и релятивистский случаи. Предел	Онлай	т — Н	
	Чандрасекара для белых карликов.	O IIII III		
	Нейтронизация вещества, нейтринное излучение, взрывы			
	сверхновых, предел Оппенгеймера-Волкова.			
12	Особенности эволюции двойных систем	Всего	аудиторных	Счасов
12	Точки Лагранжа. Полость Роша. Обмен вещества.	1	2	Iucob
	Вспышки новых.	Онлай		
		Jijiari		
13	Аккреция	Всего	⊥ аудиторных	часов
_	Элементы теории аккреции вещества. Случаи сферически-	1	2	
	симметричной (задача Бонди), цилиндрической, дисковой	Онлай	т — Н	I
	аккреции. Аккреция на нейтронные звезды (радиопульсар,	Onsian		
	пропеллер, аккретор и барстер, георотатор) и черные дыры			
	(рентгеновское излучение).			
14	Основные сведения о космических лучах (КЛ)	Всего	аудиторных	часов
	Основные понятия, интенсивность, состав, общая картина	1	2	
	спектров (протонно-ядерная компонента, электроны,	Онлайн		
	позитроны, гамма, антипротоны), «колено», «лодыжка».	01111111		
	Классификация КЛ по происхождению (первичные и			
	вторичные лучи, галактические и внегалактические,			
	атмосферные и альбедо). Наблюдения КЛ.			
	Основные эксперименты. Классификация по			
	происхождению и типу источников: дискретное и			
	рассеянное, распады пи0, «обратный Комптон»,			
	неразрешенные источники, изотропная компонента.			
	Данные наблюдений. Зависимость интенсивности от			
	плотности источников.			
15 - 16	Основные источники КЛ	Всего	аудиторных	часов
	Основные источники (первичное ускорение).	2	4	
	Распространение заряженных КЛ: диффузия в магн.полях,	Онлай	H	
	вторичное ускорение (механизмы Ферми), потери энергии			
	(на фотонах среды, синхротрон, ионизацию), расчетные			
	модели рас-пространения в Галактике (leaky box, более			
	точные уравнения переноса, программы расчета),			
	Солнечные модуляции (модель силового поля, модель с			
	учетом знака заряда). Данные о позитронах, антипротонах.			
	Основные сведения, установки, данные, проблемы.			
	Проблемы распространения для протонов (предел ГЗК),			
	фотонов, электронов. Методы определение сорта			
	первичной частицы по анализу ШАЛ, существующие			
	результаты. Модели top-down, down-up и ограничения на			
	них.			
	тии,		1	1

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Недели	Темы занятий / Содержание
	7 Семестр
2 - 3	Расширяющаяся Вселенная
	Систематическое красное смещение галактик. Закон
	Хаббла. Космологический принцип. Ньютоновская модель
	расширяющейся Вселенной, критическая плотность.
	Уравнения Фридмана эволюции Вселенной. Основные
	космологические параметры. Стадии эволюции вещества
	(RD, MD, темная энергия).
4 - 8	Основы физики внутреннего строения звезд
	Приближенные уравнения равновесия звезды, основные
	свойства их решения. Энтальпия, теорема вириала для
	звезд. Более точные уравнения, учет переноса энергии.
	Характерные времена эволюции звёзд: динамическое,
	тепловое, ядерное.
9 - 12	Ядерные циклы, нейтринное излучение звезд
	Скорость реакций под барьером, фактор Гамова, S-фактор.
	Ядерные реакции звёзд главной последовательности: pp-
	цикл, CNO-цикл. Спектр солнечных нейтрино. Основные
	эксперименты по измерению потока солнечных нейтрино
	и их результаты (Хоумстейк, (Super-)Kamiokande, SAGE,
	Gallex, SNO, Borexino,).
13 - 16	Основные сведения о космических лучах (КЛ)
	Основные понятия, интенсивность, состав, общая картина
	спектров (протонно-ядерная компонента, электроны,
	позитроны, гамма, антипротоны), «колено», «лодыжка».
	Классификация КЛ по происхождению (первичные и
	вторичные лучи, галактические и внегалактические,
	атмосферные и альбедо). Наблюдения КЛ.
	Основные эксперименты. Классификация по
	происхождению и типу источников: дискретное и
	рассеянное, распады пи0, «обратный Комптон»,
	неразрешенные источники, изотропная компонента.
	Данные наблюдений. Зависимость интенсивности от
	плотности источников.

Основные источники (первичное ускорение). Распространение заряженных КЛ: диффузия в магн.полях, вторичное ускорение (механизмы Ферми), потери энергии (на фотонах среды, синхротрон, ионизацию), расчетные модели рас-пространения в Галактике (leaky box, более точные уравнения переноса, программы расчета), Солнечные модуляции (модель силового поля, модель с учетом знака заряда). Данные о позитронах, антипротонах. Основные сведения, установки, данные, проблемы. Проблемы распространения для протонов (предел ГЗК), фотонов, электронов. Методы определение сорта первичной частицы по анализу ШАЛ, существующие резты. Модели top-down, down-up и ограничения на них.

ТЕМЫ СЕМИНАРОВ

Недели	Темы занятий / Содержание
	7 Семестр
1 - 3	Расширяющаяся Вселенная
	Систематическое красное смещение галактик. Закон
	Хаббла. Космологический принцип. Ньютоновская модель
	расширяющейся Вселенной, критическая плотность.
	Уравнения Фридмана эволюции Вселенной. Основные
	космологические параметры. Стадии эволюции вещества
	(RD, MD, темная энергия).
4 - 8	Основы физики внутреннего строения звезд
	Приближенные уравнения равновесия звезды, основные
	свойства их решения. Энтальпия, теорема вириала для
	звезд. Более точные уравнения, учет переноса энергии.
	Характерные времена эволюции звёзд: динамическое,
	тепловое, ядерное.
9 - 12	Ядерные циклы, нейтринное излучение звезд
	Скорость реакций под барьером, фактор Гамова, S-фактор.
	Ядерные реакции звёзд главной последовательности: pp-
	цикл, CNO-цикл. Спектр солнечных нейтрино. Основные
	эксперименты по измерению потока солнечных нейтрино
	и их результаты (Хоумстейк, (Super-)Kamiokande, SAGE,
	Gallex, SNO, Borexino,).
13 - 16	Основные сведения о космических лучах (КЛ)
	Основные понятия, интенсивность, состав, общая картина
	спектров (протонно-ядерная компонента, электроны,
	позитроны, гамма, антипротоны), «колено», «лодыжка».
	Классификация КЛ по происхождению (первичные и
	вторичные лучи, галактические и внегалактические,
	атмосферные и альбедо). Наблюдения КЛ.
	Основные эксперименты. Классификация по
	происхождению и типу источников: дискретное и
	рассеянное, распады пи0, «обратный Комптон»,
	неразрешенные источники, изотропная компонента.
	Данные наблюдений. Зависимость интенсивности от
	плотности источников.
	Основные источники (первичное ускорение).

Распространение заряженных КЛ: диффузия в магн.полях, вторичное ускорение (механизмы Ферми), потери энергии (на фотонах среды, синхротрон, ионизацию), расчетные модели рас-пространения в Галактике (leaky box, более точные уравнения переноса, программы расчета), Солнечные модуляции (модель силового поля, модель с учетом знака заряда). Данные о позитронах, антипротонах. Основные сведения, установки, данные, проблемы. Проблемы распространения для протонов (предел ГЗК), фотонов, электронов. Методы определение сорта первичной частицы по анализу ШАЛ, существующие резты. Модели top-down, down-up и ограничения на них.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Занятия проводятся в интерактивной форме. Даже во время лекции лектор постоянно обращается к аудитории с вопросами как на знание пройденного материала, так и озадачивающими студентов поднимаемой проблемой в рамках обсуждаемой темы.

На семинарах решаются задачи и даются на дом, которые разбираются на след. семинаре.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

	воению
баллов балльной шкале ECTS учебной дисциплины	
90-100 Б — «отлично» выставля студенту, если он глубоко и усвоил программный матер исчерпывающе, последоват четко и логически стройно излагает, умеет тесно увязь теорию с практикой, исполь	и прочно оиал, гельно, его ывать

			ответе материал монографической
			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84	7	С	студенту, если он твёрдо знает
			материал, грамотно и по существу
70-74	4 - « <i>xopouo</i> "		излагает его, не допуская
/0-/4		D	существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	1		выставляется студенту, если он имеет
			знания только основного материала,
	3 –		но не усвоил его деталей, допускает
60-64	«удовлетворительно»	E	неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
			Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
Ниже 60	2 –	F	существенные ошибки. Как правило,
Пиже оо	«неудовлетворительно»	r	оценка «неудовлетворительно»
	1		ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

Оценочные средства приведены в Приложении.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ A89 Astrophysics of Black Holes : From Fundamental Aspects to Latest Developments, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016
- 2. 3H S81 Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality: Saas-Fee Advanced Course 43. Swiss Society for Astrophysics and Astronomy, Berlin, Heidelberg: Springer Berlin Heidelberg, 2016
- 3. ЭИ Л 84 Физическая космология:, Москва: Физматлит, 2012
- 4. 539.1 Е60 Лекции по основам электрослабой модели и новой физике : учебное пособие для вузов, В. М. Емельянов, К. М. Белоцкий, Москва: МИФИ, 2007
- 5. ЭИ Е60 Лекции по основам электрослабой модели и новой физике : учебное пособие для вузов, В. М. Емельянов, К. М. Белоцкий, Москва: МИФИ, 2007
- 6. ЭИ Б88 Лекции по гравитации и космологии : учебное пособие для вузов, К. А. Бронников, С. Г. Рубин, Москва: МИФИ, 2008

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 52 Ф57 Гравитация, астрофизика, космология : дополнительные главы курса общей физики, Москва: Либроком, 2017
- 2. ЭИ Б 53 Осесимметричные стационарные течения в астрофизике : учебное пособие, Москва: Физматлит, 2005
- 3. ЭИ П 18 Радиогалактики и космология: , Москва: Физматлит, 2009
- 4. 52 3-36 Общая астрофизика : учеб. пособие для вузов, А. В. Засов, К. А. Постнов, Фрязино: Век 2, 2006
- 5. 52 Б53 Гравитация и астрофизика: , В. С. Бескин, Москва: Физматлит, 2009
- 6. 52 Б88 Лекции по гравитации и космологии : учебное пособие для вузов, К. А. Бронников, С.
- Г. Рубин, Москва: МИФИ, 2008

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

- 1. Ядерная физика МГУ (http://nuclphys.sinp.msu.ru/)
- 2. arXiv (http://arxiv.org/)

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1. Лекционная аудитория ()

Автор(ы):

Кириллов Александр Александрович

Белоцкий Константин Михайлович, к.ф.-м.н.