Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ВВЕДЕНИЕ В АСТРОФИЗИКУ И КОСМОЛОГИЮ

Направление подготовки (специальность)

[1] 14.04.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
1	3	108	32	0	0		76	0	30
Итого	3	108	32	0	0	0	76	0	

АННОТАЦИЯ

Целями освоения учебной дисциплины – дать студентам основные представления о структуре Вселенной, физике звезд и их эволюции, астрофизике космических лучей.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения учебной дисциплины – дать студентам основные представления о структуре Вселенной, физике звезд и их эволюции, астрофизике космических лучей.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для изучения дисциплины студенты должны пройти такие спец. курсы как теория поля, квантовая механика, статистическая физика, ядерная физика. Изучение дисциплины необходимо для научной работы в рамках НИРС и дипломной работы.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-иссле	довательский	
разработка методов	Исследовательская	ПК-5.1 [1] - Способен	3-ПК-5.1[1] - Знать
регистрации	работа в области	к научным	физику
элементарных частиц,	физики	исследованиям в	элементарных частиц
измерения	элементарных	области физики	и космологию;
количественных	частиц и космологии	элементарных частиц	У-ПК-5.1[1] - Уметь
характеристик,		и космологии, к	проводить
проверки		самостоятельному	экспериментальные и
закономерностей;		решению	расчетные
описание		поставленной задачи с	исследования в
взаимодействия		выбором необходимых	области физики
элементарных частиц с		средств, готовность к	элементарных частиц
веществом, откликов		самостоятельной	и космологии;
детекторов		формулировке задач	В-ПК-5.1[1] -
элементарных частиц;			Владеть знаниями в
проведение		Основание:	области физики

кинетического анализа		Профессиональный	элементарных частиц
процесса,		стандарт: 40.011	и космологии
•		отандарт. 1 0.011	H KOOMOJIOI HH
статистического			
анализа данных;			
создание			
математических			
моделей, описывающих			
процессы в физике			
частиц, в ранней			
Вселенной, космосе;			
разработка			
теоретических моделей			
прохождения излучения			
через вещество,			
воздействия			
ионизирующего,			
лазерного и			
электромагнитного			
излучений на человека			
и объекты окружающей			
среды, новых методов в			
лучевой диагностике и			
терапии; разработка			
новых подходов в			
детектировании			
излучений,			
теоретического			
решения			
фундаментальных			
проблем физики частиц			
и космологии.			
разработка методов	Исследовательская	ПК-4 [1] - Способен	3-ПК-4[1] - Знать:
регистрации	работа в области	самостоятельно	цели и задачи
элементарных частиц,	физики	выполнять	проводимых
измерения	элементарных	экспериментальные и	исследований;
количественных	частиц и космологии	теоретические	основные методы и
характеристик,		исследования для	средства проведения
проверки		решения научных и	экспериментальных и
закономерностей;		производственных	теоретических
описание		задач	исследований;
взаимодействия			методы и средства
элементарных частиц с		Основание:	математической
веществом, откликов		Профессиональный	обработки
детекторов		стандарт: 40.011	результатов
элементарных частиц;			экспериментальных
проведение			данных;
кинетического анализа			У-ПК-4[1] - Уметь:
процесса,			применять методы
статистического			проведения
анализа данных;			экспериментов;
создание			использовать
математических			математические

моделей, описывающих процессы в физике частиц, в ранней Вселенной, космосе; разработка теоретических моделей прохождения излучения через вещество, воздействия ионизирующего, лазерного и электромагнитного излучений на человека и объекты окружающей среды, новых методов в лучевой диагностике и терапии; разработка новых подходов в детектировании излучений, теоретического решения фундаментальных проблем физики частиц и космологии.

методы обработки результатов исследований и их обобщения; оформлять результаты научноисследовательских работ: В-ПК-4[1] - Владеть: навыками самостоятельного выполнения экспериментальных и теоретических исследования для решения научных и производственных задач

инновационный

оценка инновационного потенциала новой продукции для высокотехнологичных отраслей экономики; участие в создании перспективных наукоемких технологий.

Исследовательская работа в области физики элементарных частиц и космологии

ПК-13 [1] - Способен проектировать, создавать и внедрять новые продукты и системы и применять теоретические знания в реальной инженерной практике

Основание: Профессиональный стандарт: 40.011 3-ПК-13[1] - Знать математические методы и компьютерные технологии, необходимые для проектирования и разработки программного обеспечения для инженерного анализа инновационных продуктов.; У-ПК-13[1] - Уметь разрабатывать и тестировать программное обеспечение для инженерного анализа инновационных продуктов.; В-ПК-13[1] - владеть навыками разработки и тестирования программного обеспечения для

	инженерного анализа
	инновационных
	продуктов.

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	1 Семестр						
2	Часть 1	9-16	16/0/0		25	СК-8	3-ПК-4, У-ПК-4, В-ПК-4, 3-ПК-13, У-ПК-13, В-ПК-13
2		9-10				Kri-13	У-ПК-4, В-ПК-4, 3-ПК-13, У-ПК-13, В-ПК-13
	Итого за 1 Семестр		32/0/0		50		
	Контрольные мероприятия за 1 Семестр		1		50	30	3-ПК-4, У-ПК-4, В-ПК-4, 3-ПК-13, У-ПК-13, В-ПК-13

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
30	Зачет с оценкой
СК	Семестровый контроль
КИ	Контроль по итогам
3	Зачет

КАЛЕНДАРНЫЙ ПЛАН

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	1 Семестр	32	0	0
1-8	Часть 1	16	0	0
1 - 4	Основы космологии		аудиторных	
	Единицы измерения в астрофизике и космологии.	10	0	0
	Характерные масштабы структур Вселенной. Состав	Онлайі		1
	современной Вселенной.	0	0	0
	Расширение Вселенной. Красное смещение. Закон Хаббла.			
	Космологический принцип. Ньютоновская модель			
	расширяющейся Вселенной. Критическая плотность.			
	Расширяющаяся Вселенная в ОТО. Метрика ФЛРУ.			
	Уравнения Фридмана. Основные космологические			
	параметры. Решения уравнений Фридмана для разного			
	типа вещества. Стадии эволюции Вселенной. RD-MD-			
	переход. MD-DE-переход. Модель LCDM.			
	Первичный нуклеосинтез. Рекомбинация. СМВ. Проблемы			
	классической космологии Фридмана. Инфляция как			
5 0	механизм их решения.	D		
5 - 8	Основы теории образования крупномасштабной		аудиторных	
	структуры Вселенной	6	0	0
	Теория Джинса образования структур. Джинсовская длина	Онлай		
0.46	и масса. Проблемы теории Джинса и её решение.	0	0	0
9-16	Часть 2	16	0	0
9 - 13	Основы физики звёзд		аудиторных	
	Звёзды и их характеристики. Эффективная температура.	10	0	0
	Диаграмма Герцшпрунга-Рассела. Главная	Онлайі		
	последовательность.	0	0	0
	Уравнения механического равновесия звезды.			
	Динамическое время. Теорема вириала. Условие			
	устойчивости звёзд.			
	Тепловое время.			
	Давление газа и давление излучения. Эддингтоновская			
	светимость. Оценка максимальной массы звезды главной			
	последовательности.			
	Ядерное время. Туннельный эффект Гамова.			
	Термоядерные реакции. pp-циклы и CNO-циклы. Ядерное			
	горение гелия. Коллапс железного ядра массивных звёзд. Урка-процессы. Сверхновые.			
	у рка-процессы. Сверхновые. Вырожденные звёзды. Уравнения состояния			
	<u> </u>			
	нерелятивистского и релятивистского вырожденного газа. Белые карлики. Чандрасекаровский предел. Нейтронные			
	звёзды.			
	Особенности эволюции двойных систем. Точки Лагранжа.			
	Полость Роша. Обмен вещества. Вспышки новых.			
	Элементы теории аккреции вещества. Случаи сферически-			
	симметричной (задача Бонди), цилиндрической, дисковой			
	аккреции. Аккреция на нейтронные звезды (радиопульсар,			
	пропеллер, аккретор и барстер, георотатор) и чёрные дыры			
	(рентгеновское излучение).			
	Основные сведения о космических лучах	Распо	I аудиторных	Hacor
14 - 15				

спектров (протонно-ядерная компонента, электроны,	Онлайн	I	
позитроны, гамма, антипротоны), «колено», «лодыжка».	0	0	0
Классификация КЛ по происхождению (первичные и			
вторичные лучи, галактические и внегалактические,			
атмосферные и альбедо). Наблюдения КЛ.			
Основные эксперименты. Классификация по			
происхождению и типу источников: дискретное и			
рассеянное, распады пи0, «обратный Комптон»,			
неразрешенные источники, изотропная компонента.			
Данные наблюдений. Зависимость интенсивности от			
плотности источников.			
Основные источники (первичное ускорение).			
Распространение заряженных КЛ: диффузия в магн.полях,			
вторичное ускорение (механизмы Ферми), потери энергии			
(на фотонах среды, синхротрон, ионизацию), расчетные			
модели рас-пространения в Галактике (leaky box, более			
точные уравнения переноса, программы расчета),			
Солнечные модуляции (модель силового поля, модель с			
учетом знака заряда). Данные о позитронах, антипротонах.			
Основные сведения, установки, данные, проблемы.			
Проблемы распространения для протонов (предел ГЗК),			
фотонов, электронов. Методы определение сорта			
первичной частицы по анализу ШАЛ, существующие			
результаты. Модели top-down, down-up и ограничения на			
них.			

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Занятия проводятся в интерактивной форме. Даже во время лекции лектор постоянно обращается к аудитории с вопросами как на знание пройденного материала, так и озадачивающими студентов поднимаемой проблемой в рамках обсуждаемой темы.

На семинарах решаются задачи и даются на дом, которые разбираются на след. семинаре.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-13	3-ПК-13	3О, СК-8, КИ-15
	У-ПК-13	3О, СК-8, КИ-15
	В-ПК-13	3О, СК-8, КИ-15
ПК-4	3-ПК-4	3О, СК-8, КИ-15
	У-ПК-4	3О, СК-8, КИ-15
	В-ПК-4	3О, СК-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.
65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится

	студентам, которые не могут продолжить обучение без дополнительных занятий по
	соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Р 82 Актуальные вопросы космологии : Серия "Высшая школа физики", Рубаков В.А., Москва: МЭИ, 2017
- $2.52\ \Gamma67\$ Введение в теорию ранней Вселенной : теория горячего Большого взрыва , Горбунов Д.С., Рубаков В.А., Москва: ЛКИ, 2012
- 3. ЭИ Б 53 Гравитация и астрофизика: учебное пособие, Бескин В. С., Москва: Физматлит, 2009
- 4. ЭИ Б88 Лекции по гравитации и космологии : учебное пособие для вузов, Рубин С.Г., Бронников К.А., Москва: МИФИ, 2008
- 5. ЭИ Е60 Лекции по основам электрослабой модели и новой физике : учебное пособие для вузов, Емельянов В.М., Белоцкий К.М., Москва: МИФИ, 2007
- 6. 539.1 Е60 Лекции по основам электрослабой модели и новой физике : учебное пособие для вузов, Емельянов В.М., Белоцкий К.М., Москва: МИФИ, 2007
- 7. ЭИ Л 84 Физическая космология: , Михеева Е. В., Лукаш В. Н., Москва: Физматлит, 2012

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ A89 Astrophysics of Black Holes : From Fundamental Aspects to Latest Developments, , Berlin, Heidelberg: Springer Berlin Heidelberg, 2016
- 2. ЭИ S81 Star Formation in Galaxy Evolution: Connecting Numerical Models to Reality: Saas-Fee Advanced Course 43. Swiss Society for Astrophysics and Astronomy, Glover, Simon C. O. [и др.], Berlin, Heidelberg: Springer Berlin Heidelberg, 2016
- 3. 52 Г67 Введение в теорию ранней Вселенной : теория горячего Большого взрыва, Горбунов Д.С., Рубаков В.А., Москва: ЛКИ, 2008
- 4. 52 Г67 Введение в теорию ранней Вселенной. Космологические возмущения. Инфляционная теория: , Горбунов Д.С., Рубаков В.А., Москва: КРАСАНД, 2010
- 5. 52 Ф57 Гравитация, астрофизика, космология : дополнительные главы курса общей физики, Евдокимов В.С., Фильченков М.Л., Копылов С.В., Москва: Либроком, 2017
- 6. 52 3-36 Общая астрофизика : учеб. пособие для вузов, Засов А.В., Постнов К.А., Фрязино: Век 2, 2006

- 7. ЭИ П 18 Радиогалактики и космология : учебное пособие, Парийский Ю. Н., Москва: Физматлит, 2009
- 8. 52 Б65 Релятивистская астрофизика и физическая космология : , Бисноватый-Коган Г.С., Москва: КРАСАНД, 2011

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

- 1. Ядерная физика МГУ (http://nuclphys.sinp.msu.ru/)
- 2. arXiv (http://arxiv.org/)

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

1. Лекционная аудитория ()

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

Важно присутствовать на каждой лекции и вести конспект, поскольку материал основан на ряде учебников и обзорных статей, а не каком-то одном источнике. Рекомендуется записывать важные моменты, отмечаемые лектором словами, даже если таковые показались очевидными. На протяжении каждой лекции преподаватель может задавать вопросы. Активность студента в виде ответов на вопросы, а также в виде интересных вопросов преподавателю будет учитываться при итоговой отчётности.

В течение семестра студентам предлагается довести ряд вычислений, проводимых на лекциях, до конца самостоятельно, выполнение таких заданий является обязательным и помогает глубже понять суть изучаемого предмета, а также используемых в нём подходов.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Для лучшего усвоения материала студентами каждую лекцию следует начинать с напоминания предыдущей лекции (можно в виде вопросов) и пояснения ее связи с предстоящей. Также завершать лекцию следует подведением ее краткого итога с указанием темы следующей лекции и её связи с прошедшей.

На протяжении лекции полезно поддерживать интерактивность между лектором и студентами в виде вопросов в аудиторию. Важно задавать вопросы на знание материала из прошедших лекций или других курсов по мере обращения к нему или по крайней мере проговаривать их связь. Это позволяет студентам почувствовать связь между различными областями знания и сформировать более полную картину мира. Также важно постоянно задавать вопросы, озадачивающие студентов поднимаемой проблемой в рамках обсуждаемой

темы (даже если она совсем частного характера), стимулируя внимание и творческое участие студента в ходе рассуждений лектора.

Важно разъяснять происхождение вводимых терминов (белые карлики, темная энергия, термодинамическое время, Урка-процесс,...). Особенно это важно в случаях, когда прямое толкование неуместно или устарело (и даже сбивает с толку) (например, рекомбинация в космологии, ..).

Автор(ы):

Кириллов Александр Александрович