Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

КАФЕДРА ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ ЯДЕРНЫХ РЕАКТОРОВ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ТЕОРИЯ И МЕТОДЫ РАСЧЕТА РЕАКТОРОВ

Направление подготовки (специальность)

[1] 14.05.01 Ядерные реакторы и материалы

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
8	4	144	15	45	15		33	0	Э
Итого	4	144	15	45	15	15	33	0	

АННОТАЦИЯ

Обобщается понятие ценности нейтронов на случай произвольных функционалов нейтронного поля и формулируются соотношения теории малых возмущений. Анализируются свойства возникающих при этом однородных и неоднородных уравнений и обосновываются итерационные методы решения. Излагаются диффузионные конечно-разностные алгоритмы расчёта распределения нейтронов в 2-х и 3-х мерных геометриях реактора. Даётся представление о способах подготовки многогрупповых микроскопических сечений и методах решения интегро-дифференциального уравнения переноса нейтронов.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

- 1.1. Цель преподавания дисциплины состоит в ознакомлении студентов, специализирующихся в области физики ядерных реакторов, с современным состоянием теории и методов нейтронно-физического расчёта ядерных реакторов.
 - 1.2. Задачи изучения дисциплины:
- анализ основных свойств решения уравнения переноса нейтронов в размножающих средах,
- обобщение понятия ценности нейтронов на случай произвольного функционала нейтронного поля и формулировка соотношений теории возмущений,
- обоснование итерационных методов решения однородных и неоднородных уравнений теории переноса нейтронов,
- способы подготовки многогрупповых микроскопических сечений на основе оцененных ядерных данных,
- построение конечно-разностных диффузионных алгоритмов и итерационных схем нахождения распределений нейтронов и ценностей нейтронов в 2-х и 3-х мерных геометриях реактора,
- основные методы решения интегро-дифференциального уравнения переноса нейтронов.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Перечень дисциплин, необходимых для усвоения данной дисциплины:

- математический анализ
- линейная алгебра
- уравнения математичкской физики
- физика
- специальные дисциплины «Теоретические и экспериментальные основы нейтронноядерных процессов: физическая теория реакторов» и «Физическое и математическое моделирование: методы физических расчётов».

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
Проведение расчетных	научно-ис Атомный	следовательский ПК-2.1 [1] - Способен	3-ПК-2.1[1] - Знать:
проведение расчетных исследований и измерений физических характеристик на экспериментальных стендах и установках	ледокольный флот Атомные электрические станции Плавучая АЭС Сфера научных исследований в области ядерной физики и технологий	использовать современные численные методы и профессиональные расчетные пакеты прикладных программ Основание: Профессиональный стандарт: 24.078	возможности использования информационных технологий, методы численного анализа, методы определения проблемы и оценки полученных результатов для математического моделирования и анализа теплофизических и нейтронно-физических процессов с применением компьютерных кодов.; У-ПК-2.1[1] - Уметь: использовать специальные программные обеспечения для решения нейтроннофизических задач, применяя современные экспериментальные, теоретические и компьютерные методы исследований; В-ПК-2.1[1] - Владеть: навыками работы с современными программными средствами для обеспечения безопасности ядерных установок и

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование ответственности	профессионального модуля для
	за профессиональный выбор,	формирования у студентов
	профессиональное развитие и	ответственности за свое
	профессиональные решения	профессиональное развитие
	(B18)	посредством выбора студентами
		индивидуальных образовательных
		траекторий, организации системы
		общения между всеми
		участниками образовательного
		процесса, в том числе с
		использованием новых
П 1	C	информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин/практик
	формирование научного	«Научно-исследовательская
	мировоззрения, культуры	работа», «Проектная практика»,
	поиска нестандартных научно-	«Научный семинар» для:
	технических/практических	- формирования понимания
	решений, критического	основных принципов и способов
	отношения к исследованиям	научного познания мира, развития
	лженаучного толка (В19)	
	лженаучного толка (Вту)	исследовательских качеств
		студентов посредством их
		вовлечения в исследовательские
		проекты по областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и регулярных
		бесед;
		- формирования критического
		мышления, умения рассматривать
		различные исследования с
		экспертной позиции посредством
		обсуждения со студентами
		современных исследований,
		исторических предпосылок

	появления тех или иных открытий
	и теорий.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	8 Семестр						
1	Часть 1	1-8	8/23/8		25	КИ-8	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1
2	Часть 2.	9-15	7/22/7		25	КИ-15	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1
	Итого за 8 Семестр		15/45/15		50		
	Контрольные мероприятия за 8 Семестр				50	Э	3-ПК-2.1, У-ПК-2.1, В-ПК-2.1

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание		Пр./сем.,	Лаб.,	
		час.	час.	час.	
	8 Семестр	15	45	15	
1-8	Часть 1	8	23	8	
1 - 3	Уравнения и функционалы нейтронных полей.		Всего аудиторных часов		
	Уравнения нейтронных полей в операторной форме.	3	9	3	
	Понятие областей определения и значений операторов.	Онлайн			
	Сопряжение операторов. Свойства операторов уравнения	0	0	0	
	переноса. Эволюционное уравнение сменяющихся				

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	T v v	1	1	
	поколений нейтронов в размножающих средах.			
	Асимптотическое решение. Стационарные уравнения с			
	внешними источниками в размножающей среде.			
	Альтернатива Фредгольма. Функционалы нейтронных			
	полей. Однородные функционалы. Вариации			
	функционалов и функциональные производные.			
4 - 5	Функции ценности нейтронов.	Всего	аудиторны	х часов
	Общее определение ценности нейтронов в задаче с	2	6	2
	внешними источниками. Уравнение для функций	Онлай	Н	
	ценности нейтронов в неразмножающих средах с	0	0	0
	внешними источниками. Уравнение для функций			
	ценности нейтронов в условно-критическом реакторе по			
	отношению к однородным функционалам. Ценность			
	нейтронов в реакторе с нормированным нейтронным			
	полем.			
6 - 8	Лагранжианы нейтронных полей и вариационные	Всего	аудиторны	х часов
	методы.	3	8	3
	Вариационная оценка функционалов нейтронного поля в	Онлай	Н	
	задаче с внешним источником. Понятие лагранжиана	0	0	0
	нейтронного поля. Общий принцип построения			
	лагранжианов. Естественные и главные дополнительные			
	условия в вариационных задачах. Вариационный метод			
	вывода формул теории малых возмущений в задачах с			
	внешними источниками и для однородных функционалов			
	условно-критического реактора. Вариационная			
	формулировка прямых и полупрямых проекционных			
	методов решения уравнений реактора.			
9-15	Часть 2.	7	22	7
9 - 10	Методы оптимизации.	Всего	аудиторны	х часов
	Необходимые условия оптимальности в классических	2	6	2
	вариационных задачах. Задача о минимуме среднего	Онлай	_	
	квадратичного отклонения тепловыделения. Необходимые	0	0	0
	условия оптимальности в неклассических вариационных	U		
	задачах с параметрами. Метод последовательной			
	линеаризации. Общая схема метода и получение			
	допустимого решения. Задача линейного			
	программирования. Симплекс-метод решения задачи.			
	Геометрический смысл решения.			
11 - 12	Конечно-разностные диффузионные алгоритмы.	Всего	ц аудиторны	х часов
11 12	Построение конечно-разностного аналога уравнения	2	6	2
	диффузии с внешним источником. Структура матрицы	Онлай	1 -	
	конечно-разностного оператора и ее свойства. Оценка	0	0	0
	порядка аппроксимации конечно-разностной схемы.	0		0
	Итерационные методы решения конечно-разностных			
	многогрупповых уравнений. Ускорение сходимости			
				1
	т внутренних и внешних итерании	1		_1
13 14	внутренних и внешних итераций.	Roome	οιπισοσιπισ	V IIOOOD
13 - 14	Метод дискретных ординат (МДО).	-	аудиторны:	_
13 - 14	Метод дискретных ординат (МДО). Основные предположения и уравнения метода дискретных	2	6	2 2
13 - 14	Метод дискретных ординат (МДО). Основные предположения и уравнения метода дискретных ординат. Достоинства и недостатки МДО. Системы	2 Онлай	6 H	2
13 - 14	Метод дискретных ординат (МДО). Основные предположения и уравнения метода дискретных ординат. Достоинства и недостатки МДО. Системы уравнений МДО в плоско-параллельной геометрии. Член	2	6	_
13 - 14	Метод дискретных ординат (МДО). Основные предположения и уравнения метода дискретных ординат. Достоинства и недостатки МДО. Системы	2 Онлай	6 H	2

	уравнений ВМДО в задачах с сильным ослаблением нейтронного поля, порождаемого локализованными источниками. Итерационные процессы при решении уравнений МДО. Ускорение итераций.			
15	Нестационарные уравнения переноса нейтронов.	Всего	аудитор	ных часов
	Основные результаты математического анализа	1	4	1
	нестационарной задачи переноса. Асимптотическое	Онла	йн	
	представление решения. Уравнение точечной кинетики реактора. Область применимости одноточечной модели. Структура и основные свойства динамической модели ЯЭУ. Методы решения пошаговых систем уравнений.	0	0	0

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

ТЕМЫ ЛАБОРАТОРНЫХ РАБОТ

Недели	Темы занятий / Содержание
	8 Семестр
1 - 8	Часть 1
	Записать вариационную формулировку уравнений прямых проекционных методов
	Бубнова-Галеркина и Петрова-Галеркина в условно-критическом реакторе в рамках
	ДГ-приближения.
	Задача о минимуме критической массы теплового реактора.
	Задача о минимуме потери энерговыработки для станции с несколькими реакторами.
9 - 15	Часть 2
	Анализ вычислительных особенностей метода линеаризации при решении
	оптимизационных задач.
	Построить и проанализировать матрицу конечно-разностного аналога уравнения
	диффузии в одномерной плоскопараллельной геометрии.
	Построить конечно-разностный аналог уравнения переноса в рамках МДО в
	одномерной геометрии. Рассмотреть схему решения.
	Рассмотреть способы дискретизации пространственных динамических задач.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Лекции, презентации, разбор конкретных ситуаций, тестирование, выполнение контрольной работы.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-2.1	3-ПК-2.1	Э, КИ-8, КИ-15
	У-ПК-2.1	Э, КИ-8, КИ-15
	В-ПК-2.1	Э, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению	
	балльной шкале	ECTS	учебной дисциплины	
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.	
85-89		В	Оценка «хорошо» выставляется студенту,	
75-84	4 – «хорошо»	С	если он твёрдо знает материал, грамотно и	
70-74			по существу излагает его, не допуская	
		D	существенных неточностей в ответе на вопрос.	
65-69			Оценка «удовлетворительно»	
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.	
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по	

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- $1.\, \mbox{9}\mbox{ Marguet}$, Serge. , Cham: Springer International Publishing, 2017
- 2. ЭИ С 202 Инженерные основы теории и эксплуатации судовых ядерных реакторов: Допущено УМО вузов России по образованию в области энергетики и электротехники в качестве учебного пособия для студентов вузов, обучающихся по направлению подготовки "Техническая физика", Калинин Р.И., Саркисов А.А., Гусев Л.Б., Москва: МЭИ, 2017
- 3. ЭИ К89 Основы теории критичности, методы расчета и возмущение реактивности реактора : учебное пособие для вузов, Кузьмин А.М., Москва: МИФИ, 2008
- 4. ЭИ Т35 Теоретические и экспериментальные основы ядерных процессов : , Терновых М.Ю., Москва: МИФИ, 2008
- 5. 621.039 Б 94 Экспериментальная реакторная физика : Учебное пособие, Алеева Т.Б., Бушуев А.В., Москва: НИЯУ МИФИ, 2020

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 539.1 С47 Вариационно-разностные схемы в теории переноса нейтронов : , Сироткин А.М., Слесарев И.С., М.: Атомиздат, 1978
- 2. 620.91 Ш65 Вопросы математической теории реакторов : линейный анализ, Шихов С.Б., Москва: Атомиздат, 1973
- 3. 621.039 К89 Методы оптимизации ядерно-энергетических установок : Учеб.пособие, Кузьмин А.М., М.: МИФИ, 1985
- $4.621.039~\mathrm{K89}$ Основы теории критичности, методы расчета и возмущение реактивности реактора : учебное пособие для вузов, Кузьмин А.М., Москва: МИФИ, 2008
- 5. 519 ХЗ5 Прикладные итерационные методы:, Хейгеман Л., Янг Д., М.: Мир, 1986
- 6. 539.1 M30 Численные методы в теории переноса нейтронов : , Лебедев В.И., Марчук Г.И., М.: Атомиздат, 1981
- 7. 517 С40 Численные методы расчета нейтронных полей : Учеб. пособие, Сироткин А.М., М.: МИФИ, 1989

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении дисциплины полезно вспомнить основные положения вариационного исчисления, линейной алгебры и теории ядерных реакторов. Большое внимание следует уделять применению приобретаемых знаний для решения задач, встречающихся при проектировании и исследовании ядерных реакторов:

- получение соотношений теории малых возмущений в различных приближениях (односкоростном диффузионном, 2-х групповом и др.),
 - -применение этих соотношений при решении реакторных задач,
 - -построение конечно-разностных аналогов уравнения переноса нейтронов,
 - -оценка сходимости используемых итерационных численных методов.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Дисциплина завершает изучение расчётно-теоретического материала, относящегося к описанию нейтронно-физических процессов, происходящих в ядерных реакторах.

Важно обращать внимание на понимание ими физической сущности новых понятий (ценности нейтронов по отношению к различным функционалам нейтронного поля, коэффициенты чувствительности и функциональные производные и др.), а также на их использование при решении реакторных задач. При изучении материала необходимо, чтобы студенты освоили алгоритмы основных численных методов, используемых при решении уравнения переноса нейтронов, и смогли оценить точность расчёта различных физических характеристик реактора.

Автор(ы):

Кузьмин Анатолий Михайлович, д.ф.-м.н., профессор

Сироткин Алексей Михайлович, к.ф.-м.н., доцент