Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА ЭКСПЕРИМЕНТАЛЬНОЙ ЯДЕРНОЙ ФИЗИКИ И КОСМОФИЗИКИ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

СОВРЕМЕННАЯ ГАММА-СПЕКТРОМЕТРИЯ И ЕЕ ПРИЛОЖЕНИЯ

Направление подготовки (специальность)

[1] 14.04.02 Ядерные физика и технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
3	3	108	32	16	0		24	0	Э
Итого	3	108	32	16	0	16	24	0	

АННОТАЦИЯ

Изучаются характеристики и свойства гамма-излучения, процессы взаимодействия его с веществом. естественные и искусственные источники гамма-излучения, методы регистрации гамма-излучения в широком диапазоне энергий, различные гамма-спектрометрические приборы, определяются основные задачи современной гамма-спектроскопии, математические методы обработки спектрометрической информации, наиболее актуальные приложения гамма-спектрометрии для решения фундаментальных и прикладных задач в том числе и применение в ядерной медицине.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целями освоения дисциплины являются:

- 1. Изучение:
- исторический обзор открытия и развития представлений о гамма-излучении, а также основные его свойства и характеристики;
 - процессы взаимодействия гамма-излучения с веществом;
 - источники и спектрометрические детекторы гамма-излучения;
 - математические методы обработки спектрометрической информации;
- основные задачи гамма-спектрометрии и ее приложения в фундаментальных и прикладных исследованиях.
 - 2. Выработка умений и навыков:
 - Рассчитывать основные параметры гамма-спектрометрической аппаратуры;
 - Использовать математические методы обработки энергетических спектров;
 - работать с гамма спектрометрической аппаратурой.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Для изучения дисциплины студент должен обладать знаниями, полученными при изучении курсов общей физики, в том числе, раздела «Атомная физика и «Квантовая механика», а также обладать базовыми знаниями в области компьютерных технологий и других предметов, которые преподаются студентам в университете в процессе преподавания дисциплин.

Знания, полученные студентами в рамках дисциплины, составят базовый материал для изучения многих разделов дисциплин естественнонаучного и профессионального цикла вариативной части, а также будут необходимы для выполнения научно-исследовательской работы.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компе

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной	Объект или область знания	Код и наименование профессиональной	Код и наименование индикатора
деятельности (ЗПД)		компетенции;	достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ	
	палипо-иссле	опыта) довательский	
применение	атомное ядро,	ПК-11.2 [1] - Способен	3-ПК-11.2[1] - Знать
детекторов и	элементарные частицы	работать с	методы работы с
установок в области	и плазма,	детекторами и	детекторами и
физики	конденсированное	установками в области	установками в
элементарных	состояние вещества,	физики элементарных	области физики
частиц, их разработка	лазеры и их	частиц, над их	элементарных
и оптимизация;	применения, ядерные	разработкой и	частиц, а так же
	реакторы, материалы	оптимизацией;	методы их
	ядерных реакторов,		разработки и
	ядерные материалы и	Основание:	оптимизации;;
	системы обеспечения	Профессиональный	У-ПК-11.2[1] - Уметь
	их безопасности,	стандарт: 40.011	применять детекторы
	ускорители		и установки в
	заряженных частиц,		области физики
	современная		элементарных
	электронная		частиц, а так же
	схемотехника,		разрабатывать их и
	электронные системы		оптимизировать;;
	ядерных и физических		В-ПК-11.2[1] -
	установок, системы		Владеть методами
	автоматизированного		работы с
	управления ядерно- физическими		детекторами и установками в
	установками;		области физики
	yeranobkawii,		элементарных
			частиц, а так же
			методами их
			разработки и
			оптимизации;
применение	математические	ПК-11.4 [1] - Способен	3-ПК-11.4[1] - Знать
программного	модели для	к работе с	методы работы с
обеспечения и его	теоретического и	программным	программным
разработка для	экспериментального	обеспечением и его	обеспечением и его
численных	исследований явлений	разработке для	разработки для
предсказаний	и закономерностей в	численных	численных
(моделирования),	области физики; ядра,	предсказаний	предсказаний
обработки и анализа	частиц, плазмы,	(моделирования),	(моделирования),
экспериментальных	конденсированного	обработки и анализа	обработки и анализа
данных в области	состояния вещества,	экспериментальных	экспериментальных
физики	ядерных реакторов,	данных в области	данных в области
элементарных	распространения и	физики элементарных	физики

частиц,	взаимодействия	частиц,	элементарных
экспериментальной	излучения с объектами	· ·	-
_ <u>-</u>	живой и неживой	экспериментальной ядерной физики и	частиц,
ядерной физики и		• •	экспериментальной
космофизики;	природы,	космофизики;	ядерной физики и
			космофизики;;
		Основание:	У-ПК-11.4[1] - Уметь
		Профессиональный	применять
		стандарт: 40.011	программное
			обеспечение и
			выполнять его
			разработку для
			численных
			предсказаний
			(моделирования),
			обработки и анализа
			экспериментальных
			данных в области
			физики
			элементарных
			частиц,
			экспериментальной
			ядерной физики и
			космофизики;;
			В-ПК-11.4[1] -
			Владеть методами
			работы с
			программным
			обеспечением и его
			разработки для
			численных
			предсказаний
			(моделирования),
			обработки и анализа
			экспериментальных
			данных в области
			физики
			элементарных
			частиц,
			экспериментальной
			ядерной физики и
			космофизики;
оценка перспектив	атомное ядро,	ПК-3 [1] - Способен	3-ПК-3[1] - Знать
развития атомной	элементарные частицы	оценивать	достижения научно-
отрасли,	и плазма,	перспективы развития	технического
использование ее	конденсированное	атомной отрасли,	прогресса;
	=	использовать ее	у-ПК-3[1] - Уметь
современных	состояние вещества,		
достижения и	лазеры и их	современные	применять
передовых	применения, ядерные	достижения и	полученные знания к
технологий в научно-	реакторы, материалы	передовые технологии	решению
исследовательской	ядерных реакторов,	в научно-	практических задач.;
деятельности;	ядерные материалы и	исследовательской	В-ПК-3[1] - владеть
	системы обеспечения	деятельности	методами

	их безопасности, ускорители заряженных частиц, современная электронная схемотехника, электронные системы ядерных и физических установок, системы автоматизированного управления ядернофизическими установками;	Основание: Профессиональный стандарт: 40.011	моделирования физических процессов.
оценка соответствия	разработка и	ртный ПК-11.7 [1] - Способен	3-ПК-11.7[1] - Знать
предлагаемого решения достигнутому мировому уровню;	технологии применения приборов и установок для анализа веществ, радиационное воздействие ионизирующих излучений на человека и окружающую среду, радиационные технологии в медицине;	провести общую проверку предлагаемому решению, гипотезе в области экспериментальной ядерной физики и космофизики; Основание: Профессиональный стандарт: 40.011	методы проверки предлагаемых решений, гипотез в области экспериментальной ядерной физики и космофизики;; У-ПК-11.7[1] - Уметь проводить общую проверку предлагаемого решения, гипотезы в области экспериментальной ядерной физики и космофизики;; В-ПК-11.7[1] - Владеть методами проверки предлагаемых решений, гипотез в области экспериментальной ядерной физики и космофизики;
		-управленческий	-
организация работы коллектива исполнителей, принятие исполнительских решений в условиях спектра мнений, определение порядка выполнения работ;	атомное ядро, элементарные частицы и плазма, конденсированное состояние вещества, лазеры и их применения, ядерные реакторы, материалы ядерных реакторов, ядерные материалы и системы обеспечения	ПК-1 [1] - Способен планировать и управлять работой производственных и научных коллективов. Основание: Профессиональный стандарт: 40.011	3-ПК-1[1] - Знать методы управления работой производственных и научных коллективов и современную законодательную и нормативноправовую базу.; У-ПК-1[1] - уметь

их безопасности,	управле	ения работой
ускорители	произво	одственных и
заряженных частиц	, научны	х коллективов
современная	на осно	ве
электронная	совреме	енной
схемотехника,	законод	ательной и
электронные систем	нормати	ивно-
ядерных и физичесь	ких правово	ой базы.;
установок, системы	В-ПК-1	[1] - владеть
автоматизированно	го методам	ми управления
управления ядерно-	работой	í
физическими	произво	одственных и
установками;	научны	х коллективов
	на осно	ве
	совреме	енной
	законод	(ательной и
	нормати	ивно-
	правово	ой базы.

4. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
1	Введение. Источники гамма-излучения естественные и искусственные Взаимодействие гамма-излучения с веществом	1-8	16/8/0		25	КИ-8	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-3, У-ПК-3, В-ПК-11.2, У-ПК-11.2, В-ПК-11.4, У-ПК-11.4, У-ПК-11.4, В-ПК-11.7, У-ПК-11.7,
2	Приборы для регистрации гамма излучения.	9-16	16/8/0		25	КИ-16	3-ПК-1, У-ПК-1, В-ПК-1, 3-ПК-3, У-ПК-3, В-ПК-3,

				3-ПК-11.2,
				У-ПК-11.2,
				В-ПК-11.2,
				3-ПК-11.4,
				У-ПК-11.4,
				В-ПК-11.4,
				3-ПК-11.7,
				У-ПК-11.7,
				В-ПК-11.7
Итого за 3 Семестр	32/16/0	50		
Контрольные		50	Э	3-ПК-1,
мероприятия за 3				У-ПК-1,
Семестр				В-ПК-1,
-				3-ПК-3,
				У-ПК-3,
				В-ПК-3,
				3-ПК-11.2,
				У-ПК-11.2,
				В-ПК-11.2,
				3-ПК-11.4,
				У-ПК-11.4,
				В-ПК-11.4,
				3-ПК-11.7,
				У-ПК-11.7,
				В-ПК-11.7

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,	
		час.	час.	час.	
	3 Семестр	32	16	0	
1-8	Введение. Источники гамма-излучения естественные и	16	8	0	
	искусственные Взаимодействие гамма-излучения с				
	веществом				
1 - 2	Гамма-спектрометры на основе сжатых газов. Их	Всего а	Всего аудиторных часов		
	разновидности и характеристики.	2	1	0	
	Гамма-спектрометры на основе сжатых газов. Их	Онлайн	Онлайн		
	разновидности и характеристики.	0	0	0	
2 - 3	Предмет: Гамма-спектроскопия. Характеристики	Всего аудиторных часов			
	ядерного распада. Характеристики ядерного распада.	2	1	0	
	Образование рентгеновского излучения.	Онлайн	I	•	

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	Протисть дионую функция	0	0	0
	Предмет: ядерная физика.	U	U	0
	Гамма-излучение и спектр электромагнитного излучения.			
	Характеристики ядерного распада. Образование			
3 - 4	рентгеновского излучения. Основные свойства гамма-излучения. Энергетические	Всего	⊥ аудиторні	ых часов
	спектры гамма-излучения ядерных материалов.	2	<u>аудитории</u> 1	0
	Законы радиоактивного распада.	Онлай	<u>і</u>	0
	Основные свойства гамма-излучения. Взаимодействие	0	0	0
	гамма-квантов с веществом.	U		U
	Энергетические спектры гамма-излучения ядерных			
	материалов. Законы радиоактивного распада.			
4 - 5	Введение в гамма-спектроскопию. Основная	Всего	аудиторні	ых часов
	терминология гамма-спектроскопии.	2	1	0
	Введение в гамма-спектроскопию.	Онлай	<u> 1</u> Н	
	Основная терминология гамма-спектроскопии.	0	0	0
5 - 6	Взаимодействие гамма-квантов с веществом.		аудиторні	
	Широкие атмосферные ливни.	2	<u> 1</u> 1	0
	Взаимодействие гамма-квантов с веществом.	Онлай	u	
	Широкие ливни (ШАЛ).	0	0	0
6 - 7	Методы регистрации линейчатого гамма излучения.			
0 - 7	Основные понятия дозиметрии излучений.	2	аудиторні 1	0
	Методы регистрации линейчатого гамма излучения.	<u>2</u> Онлай	<u> 1</u>	U
	Основные понятия дозиметрии излучений.	Онлаи	<u>0</u>	0
7 - 8		-		
7 - 8	Сцинтилляционные спектрометрические		удиторных часов 1 0	
	кристаллические гамма-детекторы. Их типы и	2 Онлай	1	U
	характеристики.			
	Сцинтилляционные спектрометрические кристаллические гамма-детекторы. Их разновидности и характеристики	0	0	0
8	Полупроводниковые гамма-спектрометры. Их	Всего	⊥ аудиторні	IV HOCOD
O	разновидности и характеристики.	2	аудиторы 1	0
	Полупроводниковые гамма-спектрометры.	Онлай	1 TT	U
	Их разновидности и характеристики.	0	0	0
9-16		16	8	0
9 - 10	Приборы для регистрации гамма излучения. Методы обработки гамма-спектров.		<u>і о</u> аудиторні	
9 - 10	Методы обработки гамма-спектров.	2	аудиторы Т	0
	Современное программное обеспечения для обработки	Онлай	<u> 1</u>	U
	спектрометрической информации.	Онлаи	0	0
10 - 11	Использование гамма-спектрометров в			
10 - 11	_ = =	2	аудиторні 1	0
	фундаментальных и прикладных исследованиях. задач. В космофизике и астрофизике.	2 Онлай	1 	U
	Использование гамма-спектрометров в фундаментальных			
	и прикладных исследованиях,	0	0	0
	В космофизике и астрофизике.			
11 - 12	Использование гамма-спектрометров в томографии и	Всего	⊥ аудиторні	ых часов
11 12	ядерной медицине.	2	1	0
	Использование гамма-спектрометрии в томографии	Онлай	<u>т *</u> Н	
	ядерной медицине.	0	0	0
12 - 13	Использование гамма-спектрометров для решения		<u>т о</u> аудиторні	
12 - 13	задач экологии и геофизики.	2	аудиториі 1	0
	Использование гамма-спектрометрии для решения задач	Онлай	<u> </u>	10
	экологии и геофизики.	Онлаи	0	0
	okonorni ii roopionkii.	U	U	U

13 - 14	Использование гамма-спектрометров для решения	Всего	Всего аудиторных часов			
	задач радиационной безопасности и контроля за	2	1	0		
	перемещением ядерных материалов.	Онлайн				
	Использование гамма-спектрометров для решения задач	0	0	0		
	радиационной безопасности и контроля за перемещением					
	ядерных материалов.					
14 - 15	Использование гамма-спектрометров для решения	Всего аудиторных часо				
	задач таможенного радиационного контроля	2	1	0		
	пассажиров и их багажа.	Онлай	Онлайн			
	Использование гамма-спектрометров для решения задач	0	0	0		
	таможенного радиационного контроля пассажиров и их					
	багажа.					
15 - 16	Использование гамма-спектрометров для решения	Всего	Всего аудиторных часов			
	задач сортировка радиоактивных отходов и их	2	1	0		
	захоронения.	Онлай	Н			
	Использование гамма-спектрометров для решения задач	0	0	0		
	сортировка радиоактивных отходов и их захоронения.					
16	Использование гамма-спектрометров для	Всего	аудиторны	х часов		
	исследования газо-нефтяных скважин. Перспективы	2	1	0		
	развития гамма-спектроскопии.	Онлай	Н			
	Использование гамма-спектрометров для исследования	0	0	0		
	газо-нефтяных скважин. Перспективы развития гамма-					
	спектроскопии.					

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование	
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При изложении данного курса лекций наряду с традиционным методом изложения материала (мел – доска) широко используются различные компьютерные презентации, которые позволяют более наглядно и глубоко раскрыть суть вопроса для слушателей. Презентация для каждой лекции содержит около 40 слайдов. Комбинация традиционных и компьютерных методов преподнесения лекционного материала обеспечивает более высокий уровень восприятия данной дисциплины и существенно расширяет общий объем рассматриваемого материала.

В процессе занятий выделяется небольшая часть времени для того, чтобы студенты могли рассказать и показать основные результаты дополнительных домашних заданий, которые предусматривают написание рефератов по выбранным темам данного курса. Самостоятельная

подготовка рефератов, докладов и презентаций также способствует более глубокому изучению данного курса лекция.

6. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	-	(КП 1)
ПК-1	3-ПК-1	Э, КИ-8, КИ-16
	У-ПК-1	Э, КИ-8, КИ-16
	В-ПК-1	Э, КИ-8, КИ-16
ПК-11.2	3-ПК-11.2	Э, КИ-8, КИ-16
	У-ПК-11.2	Э, КИ-8, КИ-16
	В-ПК-11.2	Э, КИ-8, КИ-16
ПК-11.4	3-ПК-11.4	Э, КИ-8, КИ-16
	У-ПК-11.4	Э, КИ-8, КИ-16
	В-ПК-11.4	Э, КИ-8, КИ-16
ПК-11.7	3-ПК-11.7	Э, КИ-8, КИ-16
	У-ПК-11.7	Э, КИ-8, КИ-16
	В-ПК-11.7	Э, КИ-8, КИ-16
ПК-3	3-ПК-3	Э, КИ-8, КИ-16
	У-ПК-3	Э, КИ-8, КИ-16
	В-ПК-3	Э, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74		D	по существу излагает его, не допуская

			существенных неточностей в ответе на
			вопрос.
65-69	3 — «удовлетворительно»		Оценка «удовлетворительно»
		Е	выставляется студенту, если он имеет
			знания только основного материала, но не
60-64			усвоил его деталей, допускает неточности,
			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
	2 – «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
Ниже 60			материала, допускает существенные
			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

9. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

- 1. С самого начала занятий по курсу обратить внимание на то, что многие пункты программы встречались в курсах ядерной физики, физики элементарных частиц, методов регистрации частиц.
 - 2. Целесообразно в собственном распоряжении иметь рекомендованные пособия.

3. В НИЯУ МИФИ имеется целый ряд научных групп, работающих в области гаммаспектрометрии. Целесообразно выполнять НИР в этих группах и посещать научные семинары.

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

- 1. Акцентировать внимание студентов на современных исследованиях в области гаммаспектрометрии.
 - 2. Акцентировать внимание студентов на приложениях гамма-спектрометрии.

Автор(ы):

Улин Сергей Евгеньевич