Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ТВЕРДОГО ТЕЛА И НАНОСИСТЕМ

ОДОБРЕНО НТС ЛАПЛАЗ

Протокол № 1/04-577

от 27.04.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ ВЕЩЕСТВА (ЧАСТЬ 2)

Направление подготовки (специальность)

[1] 03.03.01 Прикладные математика и физика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	4-5	144- 180	32	48	0		19-46	0	Э
Итого	4-5	144- 180	32	48	0	0	19-46	0	

АННОТАЦИЯ

Курс является одним из центральных в обучении студентов по профилям, связанным с физикой твердого тела. Даются современные представления о конденсированном состоянии вещества, теоретические модели явлений, методы исследования, применение твердотельных эффектов в основных методах и достижениях экспериментальной физики.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Учебные задачи курса — показать многообразие физических явлений, протекающих в конденсированной фазе вещества. Научить оценивать характерные энергии, длины, времена релаксации различных физических взаимодействий в веществе, познакомить с основными подсистемами кристаллического состояния — решеткой Браве, фононной и электронной подсистемами. Дать ориентацию в различных экспериментальных методиках и теоретических описаниях, исследующих твердое тело.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина читается на старших курсах. Ожидается, что студент уже освоил курсы общей физики, высшей математики, ТФКП, изучил или начал изучение квантовой механики и статистической физики.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	научно-исследователь	ский	
участие в	природные и	ПК-2 [1] - Способен	3-ПК-2[1] - Знать
разработке новых	социальные	выбирать и применять	современное
алгоритмов и	явления и	необходимое	оборудование,
компьютерных	процессы,	оборудование,	инструменты и методы
программ для	объекты техники,	инструменты и методы	исследований для
научно-	технологии и	исследований для	решения задач в
исследовательских и	производства,	решения задач в	избранной предметной
прикладных целей	модели, методы и	избранной предметной	области.;

выбор методов и подходов к решению поставленной научной проблемы, формулировка математической модели явления, аналитические и численные расчеты создание программ и комплексов программ на базе стандартных пакетов для выполнения расчетов в рамках математических моделей, участие в разработке новых алгоритмов и компьютерных программ для научноисследовательских и прикладных целей подготовка данных для составления обзоров, отчетов и научных публикаций, участие во внедрении результатов исследований и разработок сбор и обработка научной и аналитической информации с использованием современных программ, средств и метолов вычислительной математики, компьютерных и информационных технологий участие в проведении теоретических исследований,

построении

средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и социальноэкономических наук по профилям предметной деятельности в науке, технике, технологиях, а также в сферах наукоемкого производства, управления и бизнеса.

области

Основание: Профессиональный стандарт: 06.001, 25.035, 25.049, 40.011

У-ПК-2[1] - Уметь критически оценивать, выбирать оборудования, инструментов и методов исследований в избранной предметной области; В-ПК-2[1] - Владеть навыками выбора и применения оборудование, инструменты и методы исследований для решения задач в избранной предметной области.

природные и социальные явления и процессы, объекты техники, технологии и производства, модели, методы и средства фундаментальных и прикладных исследований и разработок в области математики, физики и других естественных и

ПК-3 [1] - Способен применять численные методы решения дифференциальных и интегральных уравнений для различных физикотехнических задач

Основание: Профессиональный стандарт: 06.001, 25.049, 40.011

3-ПК-3[1] - Знать численные методы решения дифференциальных и интегральных уравнений для различных физикотехнических задач.; У-ПК-3[1] - Уметь применять численные методы решения дифференциальных и интегральных уравнений для различных физикотехнических задач.; В-ПК-3[1] - Владеть

физических,	социально-		навыками решения
математических и	экономических		дифференциальных и
компьютерных	наук по профилям		интегральных
моделей изучаемых	предметной		уравнений численными
процессов и	деятельности в		методами для физико-
процессов и явлений, в			I - I
1	науке, технике,		технических задач.
проведении	технологиях, а		
аналитических исследований в	также в сферах		
1 ' '	наукоемкого		
предметной области	производства,		
по профилю	управления и бизнеса.		
специализации;		ПУ 5 1 [1] Способон	3-ПК-5.1[1] - знать
Проведение	Деятельность по	ПК-5.1 [1] - Способен	
научных и	разработке	работать над проектами	основы физики
аналитических	материалов,	в области разработки	конденсированных
исследований по	покрытий,	полупроводниковых	сред: энергетические
отдельным разделам	приборов	приборов и систем с	зоны; классификация
(этапам, заданиям)		использованием	кристаллов на металлы,
темы (проекта) в		нанотехнологий,	полупроводники и
рамках предметной		оптоэлектронных	диэлектрики с точки
области по профилю		приборов,	зрения зонной теории,
специализации в		тонкопленочных	физику металлов,
соответствии с		покрытий и	понятие квазичастицы;
утвержденными		наноструктурированных	квазиимпульса,
планами и		материалов.	энергетического
методиками			спектра, эффективной
исследований.		Основание:	массы и заряда
участие в		Профессиональный	квазичастиц; колебания
проведении		стандарт: 25.049	кристаллической
наблюдений и			решетки и фононы,
измерений,			основы физики
выполнении			полупроводников,
эксперимента и			основы физики
обработке данных с			наноструктур;
использованием			У-ПК-5.1[1] - уметь
современных			применять основные
компьютерных			модели физики
технологий; участие			твердого тела,
в проведении			оценочные
теоретических			соотношения физики
исследований,			полупроводников и
построении			наноструктур для
физических,			оценки параметров
математических и			эксперимента;
компьютерных			В-ПК-5.1[1] - владеть
моделей изучаемых			квантовомеханическим
процессов и			описанием твердых тел,
явлений, в			терминологией
проведении			энергетических зон,
аналитических			квазичастиц и
исследований в			размерного
предметной области		<u> </u>	квантования

по профилю специализации; участие в создании новых методов и технических средств исследований и новых разработок; Проведение научных и аналитических исследований по отдельным разделам (этапам, заданиям) темы (проекта) в рамках предметной области по профилю специализации в соответствии с утвержденными планами и методиками исследований. участие в проведении наблюдений и измерений, выполнении эксперимента и обработке данных с использованием современных компьютерных технологий; участие в проведении теоретических исследований, построении физических, математических и компьютерных моделей изучаемых процессов и явлений, в проведении аналитических исследований в предметной области по профилю специализации; участие в создании новых методов и технических средств

Деятельность по разработке материалов, покрытий, приборов.

ПК-14.2 [1] - Способен проводить научные исследования в области физики конденсированного состояния вещества с целью разработки полупроводниковых, сверхпроводниковых, тонкопленочных и наноструктурированных материалов, сверхпроводящих устройств и оптоэлектронных приборов; в области оптического приборостроения, оптических материалов и технологий; в области лазерной физики с целью создания новых эталонов, методик ведения измерений и средств измерений с их последующей аттестацией и вводом в реестр средств измерений для нужд нанометрологии

Основание: Профессиональный стандарт: 25.049

3-ПК-14.2[1] - знать основные современные достижения физики твердого тела и возможности современной экспериментальной техники; основы физической оптики, теорию интерференции, дифракции, основы атомной и молекулярной спектроскопии; способы и методы создания новых эталонов.; У-ПК-14.2[1] - уметь построить математическую модель явления, рассчитать схему эксперимента, провести оценки параметров материалов, выбрать необходимые материалы и методики для решения конкретных задач с учетом дальнейшего применения в сфере научноисследовательских и опытноконструкторских работ в области физики конденсированного состояния вещества и средств измерений.; В-ПК-14.2[1] - владеть основами спектроскопии атомов и молекул, методиками ведения измерений и средств измерений;

исследований и методами получения, новых разработок, анализа и описания участие во параметров и внедрении характеристик результатов процессов в исследований и экспериментальных разработок. установках физики твердого тела и лазерной физики. конструкторско-технологический ПК-5.3 [1] - Способен к 3-ПК-5.3[1] - знать Создание программ комплексы и комплексов проведению современные программ для программ на базе научнотеоретические математического стандартных исследовательских моделирования для представления и пакетов для и прикладных прототипа или макета математические модели разрабатываемого выполнения целей при описании расчетов в рамках прибора физики взаимодействий атомов твердого тела математических и электронных моделей, участие в оболочек в кристалле, разработке новых Основание: термодинамических, алгоритмов и Профессиональный оптических, магнитных стандарт: 06.001 компьютерных и электрофизических программ для свойств твердых тел, наноструктур, научносверхпроводников; исследовательских и прикладных целей. У-ПК-5.3[1] - уметь сформулировать математическую модель для прототипа или макета разрабатываемого прибора физики твердого тела; В-ПК-5.3[1] - владеть основными теоретическими моделями для описания термодинамических, оптических, магнитных и электрофизических свойств твердых тел, наноструктур и сверхпроводников

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	научного мировоззрения, культуры	дисциплин/практик «Научно-
	поиска нестандартных научно-	исследовательская работа»,

технических/практических решений, критического отношения к исследованиям лженаучного толка (B19)

«Проектная практика», «Научный семинар» для: - формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и теорий. 1.Использование воспитательного потенциала дисциплин профессионального

Профессиональное воспитание Создание условий, обеспечивающих, формирование творческого инженерного/профессионального мышления, навыков организации коллективной проектной деятельности (В22)

1.Использование воспитательного потенциала дисциплин профессионального модуля для развития навыков коммуникации, командной работы и лидерства, творческого инженерного мышления, стремления следовать в профессиональной деятельности нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку

групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2. Использование воспитательного потенциала дисциплин профессионального модуля для: - формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными компетентностными и эмоциональными свойствами членов проектной группы.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетеннии
	7 Семестр						
1	Часть 1	1-8	16/24/0		25	КИ-8	3-ПК- 5.1, У- ПК- 5.1, В- ПК- 5.1, 3-ПК- 5.3,

						У- ПК- 5.3, В- ПК- 5.3, 3-ПК- 14.2, У- ПК- 14.2, В- ПК- 14.2,
2	Часть 2	9-16	16/24/0	25	КИ-16	3-IIK- 5.1, y- IIK- 5.1, B- IIK- 5.1, 3-IIK- 5.3, y- IIK- 5.3, 3-IIK- 14.2, y- IIK- 14.2, y- IIK- 14.2,
	Итого за 7 Семестр		32/48/0	50	n	
	Контрольные мероприятия за 7 Семестр			50	Э	3-ПК- 5.1, У- ПК- 5.1, В- ПК- 5.1, 3-ПК- 5.3, У- ПК- 5.3,

			В- ПК- 5.3, 3-ПК- 14.2,
			ПК-
			5.3,
			3-ПК-
			14.2,
			У- ПК- 14.2,
			ПК-
			14.2,
			В-
			ПК-
			В- ПК- 14.2

^{* -} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.
	7 Семестр	32	48	0
1-8	Часть 1	16	24	0
1 - 2	Тема 1. Металлическая связь	Всего а	удиторных	часов
	Электронный газ и статистика Ферми-Дирака. Плотность	4	6	0
	электронных состояний. Уровень Ферми. Средняя энергия	Онлайн	I	
	электронов. Электронный вклад в теплоемкость.	0	0	0
	Когезионная энергия металла. Обменное взаимодействие.			
	Параметр r_s.			
3 - 4	Тема 2. Кинетические явления в металле	Всего а	удиторных	часов
	Модель Друде-Лоренца. Электропроводность,	4	6	0
	диэлектрическая проницаемость. Длина свободного	Онлайн	I	
	пробега. Скин-эффект. Время релаксации и концентрация	0	0	0
	примесей. Закон Видемана-Франца. Фононы в металле.			
5 - 6	Тема 3. Движение электрона в периодическом	Всего а	удиторных	часов
	потенциале	4	6	0
	Блоховские электроны. Зоны Бриллюэна. Понятие о дырке.	Онлайн	I	
	Эффективная масса. Проводимость в зонной схеме.	0	0	0
	Металлы и диэлектрики. Приближение эффективной			
	массы. Приближение сильной связи. Узельная схема и			
	закон дисперсии в реальном веществе. Поверхность			
	Ферми.			
7 - 8	Тема 4. Эффект Холла в металле		удиторных	часов
	Коэффициент Холла и магнитосопротивление. Угол Холла.	4	6	0
	Методы измерения и интерпретации экспериментальных	Онлайн	I	

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

	данных.	0	0	0	
9-16	Часть 2	16	24	0	
9 - 10	Тема 5. Термоэлектрические эффекты		Всего аудиторных часов		
	Кинетическое уравнение во внешних полях и градиенте	4	6	0	
	температуры. Термоэлектрическая матрица. Эффект	Онлай	Н		
	Зеебека. Эффект Пельтье. Эффект Томпсона. Вывод	0	0	0	
	формулы для коэффициента термоЭДС, для эффекта				
	Томпсона.				
11 - 12	Тема 6. Термодинамика полупроводников			ных часов	
	Собственный полупроводник. Концентрация электронов и	4	6	0	
	дырок. Закон действующих масс. Положение уровня	Онлай			
	Ферми в собственном полупроводнике. Подвижность.	0	0	0	
	Температурная зависимость. Примесный полупроводник.				
	Температурная зависимость концентрации носителей.				
	Примесная зона. Полуметаллические состояния.				
13 - 14	Тема 7. Генерация и рекомбинация во внешних полях.	Всего аудиторных часов			
	Нелинейные эффекты	4	6	0	
	Равновесные и неравновесные носители заряда. Время	Онлай			
	жизни. Квазиуровень Ферми. Рекомбинация. Линейная и	0	0	0	
	квадратичная. Генерация, диффузия и дрейф в примесном				
	полупроводнике. Соотношения Эйнштейна.				
	Полупроводники в сильных электрических полях.				
	Рассеяние на фононах. ВАХ N-типа. Эффект Ганна.				
	Ударная ионизация. Туннельный эффект. Излучательная				
	рекомбинация. Безизлучательная рекомбинация. Кинетика				
	носителей заряда. Время жизни. Глубокие примеси.				
	Рекомбинация ОЖЕ. Диффузия и дрейф	_			
15 - 16	Тема 8. Контактные явления в полупроводниках		<u> </u>	ных часов	
	Контакт металл – полупроводник. Область обедненного	4	6	0	
	заряда. Запорный слой. Антизапорный слой. Барьер	Онлай			
	Шоттки. Элементарные представления о р-п- переходе.	0	0	0	
	Выпрямление. Вывод вольтамперной характеристики.				
	Квазиуровень Ферми на границе раздела. Туннельные				
	диоды. Гетеропереход.				

Сокращенные наименования онлайн опций:

Обозна	Полное наименование	
чение		
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

ТЕМЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Нопопи	Темы занятий / Содержание
ПЕДЕЛИ	Темы занятии / Содержание
	The state of the s

	7 Семестр
1 - 2	Тема 1. Металлическая связь
1 2	Теплоемкость металла. Физические причины слабого
	затухания низкотемпературной теплоемкости металла.
	Статистика фононов и электронов. Химический потенциал
	электронов. Квазичастица «свободный электрон», ее
	эффективная масса, изотропный металл. Плотность
	электронов в металлах. Поверхность Ферми. Энергия
	Ферми, средняя энергия, скорость Ферми и их зависимость
	от концентрации электронов. Кратность вырождения
	электронных состояний. Вывод формулы для теплоемкости металла. Плотность состояний на
	поверхности Ферми. Температурная зависимость
	химического потенциала. Аналитические выражения и
2 4	оценки величин для изотропного металла.
3 - 4	Тема 2. Кинетические явления
	Кинетическое уравнение. Вывод формулы для
	проводимости в приближении времени релаксации.
	Проводимость изотропного металла, формула Друде-
	Лоренца. Оценка количества электронов, возбуждаемых
	воздействием малой энергии, количество электронов,
	участвующих в электропроводности. Длина свободного
	пробега. Основные каналы рассеяния электронов в
	металле. Температурная зависимость сопротивления.
	Оценка характерных величин длин свободного пробега и
	времен релаксации. Методы измерения сопротивления.
	Скин-эффект. Проводимость в переменном поле.
	Частотная зависимость глубины скин-слоя и импеданса.
	Нормальный и аномальный скин-эффект. Исследование
	топологии поверхности Ферми в измерениях ВЧ
	импеданса. Методы измерения импеданса. Палазменные
	колебания. Прозрачность металла в ультрафиолетовом
	диапазоне.
5 - 6	Тема 3. Зонная структура металла
	Рассмотрение расширенной, повторяющейся и
	приведенной зонной схем на энергетических зон при
	квази-параболическом законе дисперсии. Принцип
	заполнения электронных состояний и заполнение зон
	квадратной решетки. Построение четырех первых зон
	Бриллюэна. Эволюция вида поверхности Ферми в
	зависимости от количества электронов, электронные и
	дырочные зоны. Теорема Латтинжера
7	Тема 4. Гальваномагнитные явления
	Коэффициент Холла в металлах с замкнутой
	поверхностью Ферми. Электронные и дырочные металлы.
	Эффект Холла в ферромагнитных металлах:
	обыкновенный и аномальный коэффициенты Холла.
	Четырех и пятиконтактные схемы измерения
	коэффициента Холла. Холловские датчики.
8	Тема 5. Термоэлектрические эффекты
	Тепло Томсона, температурная зависимость коэффициента
	Томсона. Тепло Пельтье, связь между коэффициентами

	Пельтье и Томсона. Элементы Пельтье. Эффект Зеебека,					
	связь между термоЭДС и теплом Пельтье. Термопары для					
	измерения высоких и низких температур,					
	дифференциальные термопары					
9 - 10	Тема 6. Зонная структура и термодинамика					
	полупроводников					
	Симметрия зоны Бриллюэна и количество долин в					
	кремнии и германии, эффективные массы носителей в					
	долинах и валентных зонах. Прямозонные и					
	непрямозонные полупроводники. Плотность состояний в					
	валентной зоне и зоне проводимости. Ширина					
	запрещенной зоны кремния и германия и ее температурная					
	зависимость. Расчет концентрации собственных носителей					
	в германии. Сравнение собственной проводимости					
	германия и кремния с проводимостью металлов.					
	Легированные полупроводники. Донорные и акцепторные					
	примеси, мелкие и глубокие примесные уровни,					
	характерные глубины залегания однозарядных примесных					
	уровней в германии и кремнии. Полупроводники р и п					
	типа, компенсированные полупроводники. Температурная					
	зависимость концентрации носителей, зависимость					
	ширины области насыщения от ширины запрещенной					
	зоны, глубины залегания примесного уровня и					
	концентрации легирующей примеси.					
11	Тема 7. Неравновесные носители заряда					
11	Монополярная и биполярная генерация. Типы					
	рекомбинации: излучательная, безизлучательная и ударная					
	(Оже). Центры рекомбинации и прилипания. Сечения					
	захвата электронов и дырок. Связь времени жизни					
	носителей с параметрами полупроводника и ловушек в					
	модели Шокли-Рида. Характерные времена жизни					
12 12	носителей в собственных и примесных полупроводниках.					
12 - 13	Тема 8. Диффузия и дрейф					
	Неоднородные пространственные распределения					
	неравновесных носителей. Поверхностная генерация и					
	рекомбинация. Уравнение непрерывности. Диффузия и					
	дрейф. Диффузионная длина и радиус экранирования.					
	Биполярная диффузия. Установление					
	электронейтральности при биполярной диффузии. Эффект					
	Дембера. Расчет напряжения между освещенной и					
	неосвещенной поверхностью полупроводника при					
	поверхностном поглощении света.					
14 - 15	Тема 9. Контактные явления					
	Оценка основных характеристик р-п- перехода: величины					
	потенциального барьера, ширины двойного обедненного					
	слоя, напряженности поля в обедненном слое, емкости					
	перехода. Инжекция и экстракция. Лавинный пробой.					
	Световая генерация и рекомбинация носителей в р-n-					
	переходах. Вентильный фотоэффект: плотность тока					
	короткого замыкания, напряжение холостого хода.					
	Светодиод: соотношение между излучаемой энергии и					
	выделяемым теплом, между длиной волны излучения и					

масштабом напряжения на переходе. Полупроводниковый лазер.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

При освоении данной дисциплины основную роль играют аудиторные занятия, а также самостоятельная работа студентов, заключающаяся в выполнении домашнего задания, изучении пройденного материала. Для того чтобы показать современное физическое состояние физики конденсированного состояния вещества, предусмотрено широкое использование современных научных работ и публикаций по данной теме, посещение лабораторий НИЯУ МИФИ. Рекомендуется посещение студентами научных семинаров и конференций, в том числе, проводимых в рамках Научной сессии НИЯУ МИФИ, а также в других московских университетах и институтах.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
ПК-5.1	3-ПК-5.1	Э, КИ-8, КИ-16
	У-ПК-5.1	Э, КИ-8, КИ-16
	В-ПК-5.1	Э, КИ-8, КИ-16
ПК-5.3	3-ПК-5.3	Э, КИ-8, КИ-16
	У-ПК-5.3	Э, КИ-8, КИ-16
	В-ПК-5.3	Э, КИ-8, КИ-16
ПК-14.2	3-ПК-14.2	Э, КИ-8, КИ-16
	У-ПК-14.2	Э, КИ-8, КИ-16
	В-ПК-14.2	Э, КИ-8, КИ-16

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ЕСТS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал,

			исчерпывающе, последовательно,
			четко и логически стройно его
			·
			излагает, умеет тесно увязывать
			теорию с практикой, использует в
			ответе материал монографической
0.7.00			литературы.
85-89		В	Оценка «хорошо» выставляется
75-84		C	студенту, если он твёрдо знает
	4 – «хорошо»	D	материал, грамотно и по существу
70-74			излагает его, не допуская
/0-/4			существенных неточностей в ответе
			на вопрос.
65-69			Оценка «удовлетворительно»
	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
60-64			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
***			существенные ошибки. Как правило,
Ниже 60			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ А 71 Введение в теорию полупроводников: , Санкт-Петербург: Лань, 2022
- 2. 669 И85 Закономерности развития кристаллографической текстуры и субструктурной неоднородности в циркониевых сплавах при деформации и термообработке : монография, Москва: НИЯУ МИФИ, 2014
- 3. ЭИ К 93 Курс дифференциального и интегрального исчисления: в 3-х тт. Т. 2 Курс дифференциального и интегрального исчисления, : , 2022
- 4. ЭИ С 89 Материаловедение: методы исследования структуры и состава материалов : учебное пособие для вузов, Москва: Юрайт, 2022
- 5. ЭИ Б 91 Основы полупроводниковой электроники : учебное пособие, Москва: Физматлит, 2012
- 6. ЭИ А 16 Основы теории металлов: учебное пособие, Москва: Физматлит, 2010

- 7. ЭИ И 87 Полупроводниковые термоэлектрические энергоэффективные устройства : учебное пособие, Санкт-Петербург: Лань, 2021
- 8. ЭИ Н 62 Рефлектометрия поляризованных нейтронов:, Москва: Физматлит, 2013
- 9. 538 C50 Сборник задач по физике конденсированного состояния : учебное пособие для вузов, Москва: НИЯУ МИФИ, 2012
- 10. ЭИ Ш 18 Физика полупроводников: учебное пособие, Санкт-Петербург: Лань, 2022
- 11. ЭИ С 77 Физика полупроводниковых приборов микроэлектроники : учебное пособие для вузов, Москва: Юрайт, 2022
- 12. ЭИ М12 Эффект Фарадея в магнитных плёнках : лабораторный практикум по курсу физики конденсированного состояния: учебное пособие для вузов, Москва: НИЯУ МИФИ, 2012
- 13. 620 Ф50 Физическое материаловедение Т.1 Физика твердого тела, ;: МИФИ, 2007
- 14. 539.2 К45 Введение в физику твердого тела:, Ч. Киттель, М.: МедиаСтар, 2006

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. ЭИ П 18 Введение в квантовую физику:, Санкт-Петербург: Лань, 2022
- 2. 539.1 ИЗ9 Изучение аннигиляции позитрона: Лаб.работа N12, М.: МИФИ, 2004
- $3.\ 539.1\ \mathrm{O}\text{-}75$ Основы ядерного магнитного резонанса : учеб. пособие, Москва: Вузовский учебник, 2018
- 4. 539.2 К31 Современные проблемы физики твердого тела Ч.1 Целый и дробный квантовые эффекты Холла, , Москва: НИЯУ МИФИ, 2011
- 5. 539.2 А98 Физика твердого тела Т.1, , М.: Мир, 1979
- 6. 539.2 А98 Физика твердого тела Т.2, , М.: Мир, 1979
- 7. 539.2 Г95 Физика твердого тела : учеб. пособие для техн. ун-тов, А.Г. Гуревич, СПб: Невский диалект; БХВ-Петербург, 2004
- 8. 53 К31 Вычислительные методы в квантовой физике : учеб. пособие для вузов, В. А. Кашурников, А. В. Красавин, Москва: МИФИ, 2005

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

- 1. Freemat (http://freemat.sourceforge.net)
- 2. Компилятор Fortran (http://gcc.gnu.org/wiki/GFortran)

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

1. сайт кафедры №70 НИЯУ МИФИ (http://kaf70.mephi.ru/)

- 2. сайт Американского физического общества (http://www.aps.org)
- 3. сайт издательства Elsevier ()

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

При изучении курса необходимо твердо усвоить современные представления о кристаллических структурах, о методах их экспериментального определения, о фононной и электронной подсистемах твердого тела, о классификации твердых тел. Следует изучить основные методы определения фононного спектра, плотности фононных состояний. Понимать значение фактора Дебая-Валлера в амплитуде рассеяния. Иметь представление о дефектах структуры, об элементарных возбуждениях. Знать особенности ионной связи, расчета постоянной Маделунга.

Необходимо уметь оценивать характерные параметры различных подсистем в конденсированной фазе, уметь ориентироваться в многообразии физических явлений твердого состояния. Знать особенности электронной подсистемы твердого тела, вид блоховской волновой функции, особенности зонной структуры и движения блоховского электрона во внешних полях. Уметь объяснить различие металла и диэлектрика, полуметалла и полупроводника. Рассчитывать статистику электронов и дырок, понимать значение эффективной массы для динамики носителей заряда. Знать основные методы определения концентрации носителей и знака их заряда, методы расчета зонной структуры, примесных состояний.

Небходимо владеть современными теоретическими представлениями при описании взаимодействий атомов и электронных оболочек в кристалле, о термодинамических, оптических, магнитных и электрофизических свойствах твердых тел, а также представлять основные резонансно-магнитные и другие экспериментальные методы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Необходимо дать студентам основные представления об электронной и фононной подсистемах твердого тела.

Курс опирается на материал следующих дисциплин, читаемых студентам физикоматематических специальностей: уравнения математической физики, квантовая механика, макроэлектродинамика, теория вероятностей, статистическая физика и термодинамика. Для успешного освоения дисциплины необходимы знания по курсам общей физики и университетскому курсу математики. Необходимо проверить умение работать с операторами, знать дифференциальное и интегральное исчисление, тензорный и векторный анализ, статистику и термодинамику, электричество и магнетизм, в том числе в материальных средах.

Необходимо, чтобы студенты ориентировались в задачах квантовой механики и статистической физики, основные квантовые и классические распределения, элементы квантовой статистики. В процессе освоения материала следует дать основные представления об электронной и фононной подсистемах твердого тела, о классификации межатомных связей, слагающих кондесированное состояние, о различных методах экспериментального исследования этих подсистем. Следует рассказать об основных общепринятых теоретических представлениях о физических процессах в твердых телах, об отличии твердого состояния от других агрегатных состояний вещества. Необходимо научить понятию о дальнем и ближнем порядке, о дефектах кристаллической структуры, о кинетических и термодинамических свойствах и моделях, описывающих эти свойства.

Автор(ы):

Кашурников Владимир Анатольевич, д.ф.-м.н., профессор

Кузнецов Алексей Владимирович, к.ф.-м.н.

Конюхов Игорь Юрьевич