Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ

КАФЕДРА ТЕОРЕТИЧЕСКОЙ И ЭКСПЕРИМЕНТАЛЬНОЙ ФИЗИКИ ЯДЕРНЫХ РЕАКТОРОВ

ОДОБРЕНО УМС ИЯФИТ

Протокол № 01/08/24-573.1

от 30.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ВВЕДЕНИЕ В НЕЙТРОННО-ФИЗИЧЕСКИЕ РАСЧЕТЫ

Направление подготовки (специальность)

[1] 14.03.02 Ядерные физика и технологии

[2] 22.03.01 Материаловедение и технологии материалов

[3] 14.03.01 Ядерная энергетика и теплофизика

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
6	4	144	15	30	0		48	15	Э
Итого	4	144	15	30	0	0	48	15	

АННОТАЦИЯ

Изучаются основные процессы взаимодействия нейтронов с веществом, теория диффузии и замедления нейтронов, основы термализации и многогрупповое приближение для описания нейтронного поля. Формулируется газокинетическое уравнение переноса нейтронов в интегро-дифференциальной (уравнение Больцмана) и интегральной формах. Обсуждаются основные приближения различных моделей описания распределения нейтронов в средах.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Цель освоения учебной дисциплины теория переноса нейтронов является ввод студентов в круг понятий, представлений и моделей, используемых в задачах нейтронной физики и физики реакторов, подготовить их к изучению физической теории реакторов, методов экспериментального и расчетного исследования нейтронных полей и их характеристик.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Содержание программы направлено на формирование базовых знаний в нейтронной физики и физики реактора. Изучение курса требует освоения студентами дисциплин, в которых дают основы математического анализа.

Данная дисциплина является базой для изучения спецкурсов "Физическая теория реакторов" и "Экспериментальная реакторная физика". Знание ее материалов необходимо выполнение УИР, а также при практической работе выпускников по специальности.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
УК-1 [1, 2, 3] – Способен	3-УК-1 [1, 2, 3] — Знать: методики сбора и обработки
осуществлять поиск, критический	информации; актуальные российские и зарубежные
анализ и синтез информации,	источники информации в сфере профессиональной
применять системный подход для	деятельности; метод системного анализа
решения поставленных задач	У-УК-1 [1, 2, 3] – Уметь: применять методики поиска,
	сбора и обработки информации; осуществлять
	критический анализ и синтез информации, полученной из
	разных источников
	В-УК-1 [1, 2, 3] – Владеть: методами поиска, сбора и
	обработки, критического анализа и синтеза информации;
	методикой системного подхода для решения поставленных
	задач
W 2 5 4 2 2 2 5 5	
УК-3 [1, 2, 3] – Способен	3-УК-3 [1, 2, 3] – Знать: основные приемы и нормы
осуществлять социальное	социального взаимодействия; основные понятия и методы
взаимодействие и реализовывать	конфликтологии, технологии межличностной и групповой
свою роль в команде	коммуникации в деловом взаимодействии

	У-УК-3 [1, 2, 3] — Уметь: устанавливать и поддерживать контакты, обеспечивающие успешную работу в коллективе; применять основные методы и нормы социального взаимодействия для реализации своей роли и взаимодействия внутри команды В-УК-3 [1, 2, 3] — Владеть: простейшими методами и приемами социального взаимодействия и работы в команде
УК-6 [1, 2, 3] — Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни	3-УК-6 [1, 2, 3] — Знать: основные приемы эффективного управления собственным временем; основные методики самоконтроля, саморазвития и самообразования на протяжении всей жизни У-УК-6 [1, 2, 3] — Уметь: эффективно планировать и контролировать собственное время; использовать методы саморегуляции, саморазвития и самообучения В-УК-6 [1, 2, 3] — Владеть: методами управления собственным временем; технологиями приобретения. использования и обновления социо-культурных и профессиональных знаний, умений, и навыков; методиками саморазвития и самообразования в течение всей жизни

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания		дисциплин
Духовно-нравственное	Создание условий,	1. Использование воспитательного
воспитание	обеспечивающих,	потенциала базовых гуманитарных
	формирование этического	дисциплин. 2. Разработка новых
	мышления и	инновационных курсов
	профессиональной	гуманитарной и междисциплинарной
	ответственности ученого (В2)	направленности.
Духовно-нравственное	Создание условий,	1. Использование воспитательного
воспитание	обеспечивающих,	потенциала базовых гуманитарных
	формирование личностно-	дисциплин. 2. Разработка новых
	центрированного подхода в	инновационных курсов
	профессиональной	гуманитарной и междисциплинарной
	коммуникации, когнитивно-	направленности.
	поведенческих и практико-	
	ориентированных навыков,	
	основанных на	
	общероссийских	
	традиционных ценностях (В3)	
Профессиональное и	Создание условий,	1.Использование воспитательного
трудовое воспитание	обеспечивающих,	потенциала дисциплин
	формирование глубокого	естественнонаучного и
	понимания социальной роли	общепрофессионального модуля для:
	профессии, позитивной и	- формирования позитивного
	активной установки на	отношения к профессии инженера
	ценности избранной	(конструктора, технолога),
	специальности, ответственного	понимания ее социальной

отношения к профессиональной деятельности, труду (B14)

значимости и роли в обществе, стремления следовать нормам профессиональной этики посредством контекстного обучения, решения практико-ориентированных ситуационных задач. - формирования устойчивого интереса к профессиональной деятельности, способности критически, самостоятельно мыслить, понимать значимость профессии посредством осознанного выбора тематики проектов, выполнения проектов с последующей публичной презентацией результатов, в том числе обоснованием их социальной и практической значимости; формирования навыков командной работы, в том числе реализации различных проектных ролей (лидер, исполнитель, аналитик и пр.) посредством выполнения совместных проектов. 2.Использование воспитательного потенциала дисциплины «Экономика и управление в промышленности на основе инновационных подходов к управлению конкурентоспособностью», «Юридические основы профессинальной деятельности» для: - формирования навыков системного видения роли и значимости выбранной профессии в социальноэкономических отношениях через контекстное обучение

Профессиональное воспитание

Создание условий, обеспечивающих, формирование научного мировоззрения, культуры поиска нестандартных научнотехнических/практических решений, критического отношения к исследованиям лженаучного толка (В19)

- 1.Использование воспитательного потенциала дисциплин/практик «Научно-исследовательская работа», «Проектная практика», «Научный семинар» для:
- формирования понимания основных принципов и способов научного познания мира, развития исследовательских качеств студентов посредством их вовлечения в исследовательские проекты по областям научных исследований. 2.Использование воспитательного потенциала дисциплин "История науки и инженерии", "Критическое

мышление и основы научной коммуникации", "Введение в специальность", "Научноисследовательская работа", "Научный семинар" для: - формирования способности отделять настоящие научные исследования от лженаучных посредством проведения со студентами занятий и регулярных бесед; - формирования критического мышления, умения рассматривать различные исследования с экспертной позиции посредством обсуждения со студентами современных исследований, исторических предпосылок появления тех или иных открытий и теорий. Профессиональное Создание условий, 1.Использование воспитательного обеспечивающих, воспитание потенциала дисциплин формирование способности и профессионального модуля для стремления следовать в развития навыков коммуникации, профессии нормам поведения, командной работы и лидерства, обеспечивающим творческого инженерного мышления, нравственный характер стремления следовать в трудовой деятельности и профессиональной деятельности неслужебного поведения (В21) нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для: - формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рационально-технологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными

	компетентностными и
	эмоциональными свойствами членов
	проектной группы.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

N.C.	TT			pokn nsy ic	- 1	1	
№ п.п	Наименование раздела учебной дисциплины	и	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
		Недели	Лекц (семи Лабој работ	Обязат. контро. неделя)	Макс балл	Аттест: раздела неделя)	Индикат освоения компетен
	6 Семестр						
1	Часть 1	1-8	8/16/0		25	КИ-8	3-УК-1, У-УК-1, В-УК-1, 3-УК-3, У-УК-3, В-УК-6, У-УК-6, В-УК-6
2	Часть 2	9-15	7/14/0		25	КИ-15	3-YK-1, Y-YK-1, B-YK-1, 3-YK-3, Y-YK-3, B-YK-6, Y-YK-6, B-YK-6
	Итого за 6 Семестр		15/30/0		50		
	Контрольные мероприятия за 6 Семестр				50	Э	3-УК-1, У-УК-1, В-УК-1, 3-УК-3, У-УК-3, В-УК-6, У-УК-6, В-УК-6

^{* –} сокращенное наименование формы контроля

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание	Лек.,	Пр./сем.,	Лаб.,
		час.	час.	час.
	6 Семестр	15	30	0
1-8	Часть 1	8	16	0
1 - 2	Введение. Взаимодействие нейтронов с веществом.	Всего а	аудиторных	часов
	Предмет теории переноса нейтронов. Источники	2	4	0
	нейтронов. Основные процессы и особенности	Онлай	H	
	взаимодействия нейтронов с веществом. Реакции	0	0	0
	нейтронов с ядрами среды. Понятие микроскопического и			
	макроскопического сечений взаимодействия нейтронов.			
	Длина свободного пробега.			
3 - 4	Диффузия моноэнергетических нейтронов.	Всего а	аудиторных	часов
	Нейтрон в фазовом пространстве. Нейтронное поле.	2	4	0
	Понятие плотности потока, плотности полного и	Онлайі	H	
	односторонних токов нейтронов. Диффузия	0	0	0
	моноэнергетических нейтронов в среде покоящихся ядер			
	как модель переноса нейтронов. Балансное уравнение			
	скоростей процессов. Закон Фика (без вывода).			
	Коэффициент диффузии, транспортное сечение и			
	транспортная длина свободного пробега, длина диффузии.			
	Уравнение диффузии моноэнергетических нейтронов.			
	Условия однозначного выбора решений уравнения			
	диффузии в физических задачах. Фундаментальные			
	решения уравнения диффузии в плоской, цилиндрической			
	и сферической геометриях. Диффузионные функции			
	влияния и принцип суперпозиции источников. Альбедо.			
	Постановка граничных условий с помощью альбедо.			
5 - 6	Замедление нейтронов в непоглощающих средах.	Всего аудиторных часов		
	Микроскопическое сечение упругого рассеяния.	2	4	0
	Кинематика замедления. Закон упругого рассеяния.	Онлай	Н	
	Средняя потеря энергии при рассеянии,	0	0	0
	среднелогарифмическая потеря энергии, средний косинус			
	угла рассеяния. Летаргия. Уравнение замедления.			
	Плотность столкновений, плотность рассеяния, плотность			
	замедления. Замедление на водороде. Замедление на			
	тяжелых ядрах: функция Плачека (без вывода),			
	асимптотическое распределение замедляющихся			
	нейтронов (спектр Ферми).			
7 - 8	Замедление нейтронов в поглощающих средах.	Всего а	аудиторных	часов
	Микроскопическое сечение поглощения. Резонансы в	2	4	0
	сечениях взаимодействия. Формула Брейта-Вигнера.	Онлай	H	
	Доплер-эффект. Замедление на водороде при наличии	0	0	0
	поглощения. Вероятность избежать резонансного			

	поглощения на узком изолированном резонансе при			
	замедлении на водороде. Замедление на ядрах с А 1			
	(асимптотическая область энергии) при наличии			
	поглощения. Вероятность избежать резонансного			
	поглощения на узком изолированном резонансе при			
	замедлении на ядрах с А 1. Приближение бесконечной			
	массы поглотителя. Поглощение на серии узких			
	изолированных резонансов в асимптотической области			
	энергий. Эффективный и истинный резонансный интеграл.			
9-15	Часть 2	7	14	0
9 - 11	Диффузионно-возрастное приближение.	Всего а	удиторных	часов
	Балансное уравнение скоростей процессов. Диффузионно-	3	6	0
	возрастное приближение. Уравнение возраста, основные	Онлайн	I	•
	приближения и границы применимости. Условия	0	0	0
	однозначного выбора решений уравнения возраста в			
	физических задачах. Возраст нейтронов. Связь возраста			
	нейтронов с временем замедления. Элементарная форма			
	уравнения возраста. Фундаментальные решения уравнения			
	возраста. Особенности пространственного распределения			
	замедляющихся нейтронов в водородосодержащих средах.			
12 - 13	Термализация нейтронов.	Всего а	удиторных	часов
	Особенности взаимодействия нейтронов с веществом в	2	4	0
	области энергий ниже 1эВ. Закон рассеяния в случае учета	Онлайн	I	•
	теплового движения ядер. Уравнение переноса с учетом	0	0	0
	эффектов термализации. Спектр Максвелла. Эффективная			
	температура нейтронного газа. Усреднение сечений в			
	области термализации.			
14	Многогрупповое приближение.	Всего а	удиторных	часов
	Уравнение диффузии в многогрупповом приближении.	1	2	0
	Технология получения групповых констант.	Онлайн	I	•
		0	0	0
15	Газокинетическое уравнение переноса нейтронов.	Всего а	удиторных	I .
	Уравнение баланса скоростей процессов в фазовом	1	$\frac{1}{2}$	0
	объеме. Интегро-дифференциальное уравнение	Онлайн		1 -
	Больцмана. Уравнение диффузии моноэнергетических	0	0	0
	нейтронов как частный случай уравнения Больцмана.			
	Интегральная форма газокинетического уравнения.			
	Уравнение Пайерлса.			
L	l 1	ı	1	

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

В образовательном процессе предусматривается широкое использование активных и интерактивных форм проведения занятий (компьютерных презентаций, разбора конкретных ситуаций по теме, проведения дискуссий) в сочетании с внеаудиторной работой с целью формирования и развития профессиональных навыков студентов.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
		(КП 1)
УК-1	3-УК-1	Э, КИ-8, КИ-15
	У-УК-1	Э, КИ-8, КИ-15
	В-УК-1	Э, КИ-8, КИ-15
УК-3	3-УК-3	Э, КИ-8, КИ-15
	У-УК-3	Э, КИ-8, КИ-15
	В-УК-3	Э, КИ-8, КИ-15
УК-6	3-УК-6	Э, КИ-8, КИ-15
	У-УК-6	Э, КИ-8, КИ-15
	В-УК-6	Э, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84		С	если он твёрдо знает материал, грамотно и
70-74	4 – «хорошо»	D	по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала, но не
			усвоил его деталей, допускает неточности,
			недостаточно правильные формулировки,
			нарушения логической
			последовательности в изложении
			программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не знает
			значительной части программного
			материала, допускает существенные
			ошибки. Как правило, оценка
			«неудовлетворительно» ставится
			студентам, которые не могут продолжить
			обучение без дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ Т19 Interactions of hydrogen with fusion reactor materials : , Tanabe Tetsuo, Moscow: MEPhi, 2019
- 2. ЭИ N50 Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials : , , Cham: Springer International Publishing, 2016
- 3. ЭИ С50 Диффузия и замедление нейтронов в неразмножающих средах : лабораторный практикум, Смирнов В.Е., Москва: МИФИ, 2008
- 4. ЭИ К85 Теория переноса нейтронов : учебное пособие для вузов, Юрова Л.Н., Крючков Э.Ф., Москва: МИФИ, 2007

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

- 1. 621.039 X94 Диффузия и замедление нейтронов в неразмножающих средах : Учеб. пособие, Кашутин А.А., Хромов В.В., М.: МИФИ, 1982
- 2. 539.1 Ю78 Нейтронные эффективные сечения: Учеб. пособие, Юрова Л.Н., М.: МИФИ, 1986
- 3. 621.039 Б43 Теория ядерных реакторов:, Белл Д., Глесстон С., М.: Атомиздат, 1974

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В качестве литературы лектору, а также преподавателям, ведущим практические занятия, рекомендуется использовать учебные пособия, методические и справочные материалы.

Курс является основным, а также служит теоретической базой для изучения других основных курсов, таких как "Физическая теория реакторов" и "Экспериментальная реакторная физика". Главной задачей курса является введение студентов в круг понятий, представлений и моделей, используемых в задачах нейтронной физики и физики реакторов, подготовить их к изучению физической теории реакторов, методов экспериментального и расчетного исследования нейтронных полей и их характеристик.

В начале курса необходимо подробно рассмотреть различные виды взаимодействия нейтрона с ядром. Далее уделять внимание на освоение студентами основных понятий нейтронной физики, таких как поток нейтронов, микро- и макроскопические сечения, длина диффузии, возраст, и т.д., а также уделять особое внимание на усвоение закономерностей формирования нейтронных полей в различных средах на основе классических представлений о диффузии, замедлении и термализации нейтронов, а также на знание границ применимости этих моделей и возможных путей их уточнения.

Во время практических занятий уделить особое место способностям студентов применять те или иные приближения для решения практических нейтронно-физических задач.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

В качестве литературы лектору, а также преподавателям, ведущим практические занятия, рекомендуется использовать учебные пособия, методические и справочные материалы.

Для данного направления курс является основным, а также служит теоретической базой для изучения других основных курсов, таких как Физическая теория реакторов и Экспериментальная реакторная физика. Главной задачей курса является введение студентов в круг понятий, представлений и моделей, используемых в задачах нейтронной физики и физики реакторов, подготовить их к изучению физической теории реакторов, методов экспериментального и расчетного исследования нейтронных полей и их характеристик.

В начале курса необходимо подробно рассмотреть различные виды взаимодействия нейтрона с ядром. Далее уделять внимание на освоение студентами основных понятий нейтронной физики, таких как поток нейтронов, микро- и макроскопические сечения, длина диффузии, возраст, и т.д., а также уделять особое внимание на усвоение закономерностей формирования нейтронных полей в различных средах на основе классических представлений о диффузии, замедлении и термализации нейтронов, а также на знание границ применимости этих моделей и возможных путей их уточнения.

Во время практических занятий уделить особое место способностям студентов применять те или иные приближения для решения практических нейтронно-физических задач.

Автор(ы):

Волков Юрий Николаевич