Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ ЛАЗЕРНЫХ И ПЛАЗМЕННЫХ ТЕХНОЛОГИЙ КАФЕДРА ФИЗИКИ ТВЕРДОГО ТЕЛА И НАНОСИСТЕМ

ОДОБРЕНО УМС ЛАПЛАЗ

Протокол № 1/08-577

от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ ВЕЩЕСТВА

Направление подготовки (специальность)

[1] 12.03.05 Лазерная техника и лазерные технологии

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической подготовки/ В	СРС, час.	КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
7	2	72	32	0	0		40	0	3
8	2	72	24	0	0		21	0	Э
Итого	4	144	56	0	0	0	61	0	

АННОТАЦИЯ

Основные области физики твердого тела, изучение которых предусмотрено программой курса и специализацией групп по лазерной физике. Рассматриваются основы кристаллографии, а также методы определения кристаллических структур, различные виды кристаллических связей и дефектов в твердых телах. Описаны колебания кристаллической решетки атомов и обосновано введение понятия «фонон». Основное внимание уделяется металлам и полупроводникам в соответствии с требованиями специализации группы. Поэтому подробно обсуждается зонная теория кристаллов наряду со связью зонной структуры с электрическими свойствами металлов и полупроводников. Также даны основы контактных явлений и детальный анализ работы р-п перехода в качестве одного из основных элементов полупроводниковых лазеров.

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Показать многообразие физических явлений, протекающих в конденсированной фазе вещества. Научить оценивать характерные энергии, длины, времена релаксации различных физических взаимодействий в веществе, познакомить с основными подсистемами кристаллического состояния – решеткой Браве, фононной и электронной подсистемами. Дать ориентацию в различных экспериментальных методиках и теоретических описаниях, исследующих твердое тело.

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Курс опирается на материал следующих дисциплин, читаемых студентам физикоматематических специальностей: уравнения математической физики, квантовая механика, макроэлектродинамика, теория вероятностей, статистическая физика и термодинамика.

Для успешного освоения дисциплины необходимы знания по курсам общей физики и университетскому курсу математики. Необходимо уметь работать с операторами, знать дифференциальное и интегральное исчисление, тензорный и векторный анализ, статистику и термодинамику, электричество и магнетизм, в том числе в материальных средах. Необходимо ориентироваться в задачах квантовой механики и статистической физики, основные квантовые и классические распределения, элементы квантовой статистики.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

=	
Код и наименование компетенции	Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	Код и наименование

профессиональной деятельности (ЗПД)	область знания	профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ	индикатора достижения профессиональной компетенции
		опыта)	
	научно-исс	ледовательский	
Анализ поставленной задачи исследований в области лазерной техники и лазерных технологий;- математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований, разработка программ и их отдельных блоков, отладка и настройка для решения задач лазерной техники и лазерных технологий; проведение экспериментальных исследований взаимодействия лазерного излучения с веществом; проведение измерений по заданным методикам с выбором технических средств и обработкой результатов; составление описаний проводимых исследований и разрабатываемых проектов; осуществление наладки, настройки, юстировки и опытной проверки лазерных технологических	процессы взаимодействия лазерного излучения с веществом, включая биологические объекты; лазерные приборы, системы и технологии различного назначения; процессы генерации, усиления, модуляции, распространения и детектирования лазерного излучения; программное обеспечение и компьютерное моделирование в лазерных технологиях.	ПК-2.6 [1] - Способен к владению основами физики конденсированных сред, использованию знаний о классификации кристаллов на металлы, полупроводники и диэлектрики с точки зрения зонной теории, о колебаниях кристаллической решетки и фононах, о магнитных характеристиках твердых тел; к использованию методов исследования структуры, оптических и электрофизических свойств конденсированных	3-ПК-2.6[1] - Знать: основы физики твердого тела; У-ПК-2.6[1] - Уметь: ориентироваться в многообразии физических явлений твердого состояния; В-ПК-2.6[1] - Владеть: современными теоретическими представлениями при описании взаимодействий атомов и электронных оболочек в кристалле; принципами экспериментального исследования твёрдых тел
систем; Анализ поставленной задачи исследований в области лазерной	процессы взаимодействия лазерного	ПК-1 [1] - Способен к математическому моделированию	3-ПК-1[1] - Знать возможности стандартных пакетов

техники и лазерных технологий;математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований, разработка программ и их отдельных блоков, отладка и настройка для решения задач лазерной техники и лазерных технологий; проведение экспериментальных исследований взаимодействия лазерного излучения с веществом; проведение измерений по заданным методикам с выбором технических средств и обработкой результатов; составление описаний проводимых исследований и разрабатываемых проектов; осуществление наладки, настройки, юстировки и опытной проверки лазерных приборов и лазерных технологических систем; Анализ поставленной задачи исследований в

излучения с веществом, включая биологические объекты; лазерные приборы, системы и технологии различного назначения; процессы генерации, усиления, модуляции, распространения и детектирования лазерного излучения; программное обеспечение и компьютерное моделирование в лазерной технике и лазерных технологиях.

процессов и объектов лазерной техники и технологий на базе стандартных пакетов автоматизированного проектирования и самостоятельно разработанных программных продуктов

Основание: Профессиональный стандарт: 40.011

автоматизированного проектирования при математическом моделировании объектов лазерной техники и технологий.; У-ПК-1[1] - Уметь решать типичные математические задачи на базе стандартных пакетов автоматизированного проектирования; В-ПК-1[1] - Владеть навыками самостоятельной разработки программ при математическом моделировании процессов и объектов лазерной техники и технологий

Анализ поставленной задачи исследований в области лазерной техники и лазерных технологий;-математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований,

процессы взаимодействия лазерного излучения с веществом, включая биологические объекты; лазерные приборы, системы и технологии различного назначения; процессы

ПК-2 [1] - Способен к проведению измерений и исследования различных объектов по заданной методике

Основание: Профессиональный стандарт: 40.011 3-ПК-2[1] - Знать основы электротехники и электроники, основы теории сигналов, основные физические методы измерений и исследований в области профессиональной деятельности.; У-ПК-2[1] - Уметь выбирать и

разработка программ и их отдельных блоков, отладка и настройка для решения задач лазерной техники и лазерных технологий; проведение экспериментальных исследований взаимодействия лазерного излучения с веществом; проведение измерений по заданным методикам с выбором технических средств и обработкой результатов; составление описаний проводимых исследований и разрабатываемых проектов; осуществление наладки, настройки, юстировки и опытной проверки лазерных приборов и лазерных технологических систем; Анализ поставленной

генерации, усиления, модуляции, распространения и детектирования лазерного излучения; программное обеспечение и компьютерное моделирование в лазерных технологиях. использовать соответствующие ресурсы и оборудование для проведения исследований и измерений; В-ПК-2[1] - Владеть методами и приемами исследований, а также навыками измерений по заданной методике в области профессиональной деятельности

задачи исследований в области лазерной техники и лазерных технологий;математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований, разработка программ и их отдельных блоков, отладка и настройка для решения задач лазерной техники и лазерных технологий; проведение экспериментальных исследований взаимодействия

процессы взаимодействия лазерного излучения с веществом, включая биологические объекты; лазерные приборы, системы и технологии различного назначения; процессы генерации, усиления, модуляции, распространения и детектирования лазерного излучения; программное обеспечение и компьютерное

ПК-3 [1] - Способен к наладке, настройке, юстировке и опытной проверке приборов и систем

Основание: Профессиональный стандарт: 40.011

3-ПК-3[1] - знать основы теории измерений, основы работы с измерительной аппаратурой, основы оптико-физических измерений;; У-ПК-3[1] - Уметь пользоваться основными измерительными и сервисными приборами юстировать оптические установки; В-ПК-3[1] - Владеть методами и приемами наладки, настройки, юстировки и опытной проверки приборов и систем.

лазерного излучения с
веществом; проведение
измерений по
заданным методикам с
выбором технических
средств и обработкой
результатов;
составление описаний
проводимых
исследований и
разрабатываемых
проектов;
осуществление
наладки, настройки,
юстировки и опытной
проверки лазерных
приборов и лазерных
технологических
систем;

моделирование в лазерной технике и лазерных технологиях.

проектно-конструкторский

Анализ поставленной проектной задачи в области лазерной техники и лазерных технологий; участие в разработке функциональных и структурных схем на уровне узлов и элементов лазерных систем и технологий по заданным техническим требованиям; расчет, проектирование и конструирование в соответствии с техническим заданием типовых систем, приборов, деталей и узлов лазерных систем и технологий на схемотехническом и элементном уровнях; разработка и составление отдельных видов технической документации на проекты, их элементы и сборочные единицы; участие в монтаже, сборке (юстировке),

разработка лазерных приборов, систем и технологий различного назначения; элементная база лазерной техники, технологий, систем управления и транспорта лазерного излучения ПК-4 [1] - Способен к анализу, расчету, проектированию и конструированию в соответствии с техническим заданием типовых систем, приборов, деталей и узлов на схемотехническом и элементном уровнях

Основание: Профессиональный стандарт: 29.004

3-ПК-4[1] - Знать правила разработки проектной и рабочей технической документации, правила оформления конструкторской документации принципы и методы расчета и проектирования деталей и узлов приборов и установок в соответствии с техническим заланием. У-ПК-4[1] - Уметь анализировать технические требования, предъявляемые к разрабатываемым узлам и элементам рассчитывать и проектировать детали и узлы приборов и установок, разрабатывать проекты технических описаний установок и приборов, проводить концептуальную и

испытаниях и сдаче в			проектную проработку
			типовых систем,
эксплуатацию опытных образцов			приборов, деталей и
лазерной техники и			
отработке элементов и			узлов на схемотехническом и
этапов процессов			
лазерных технологий			элементном уровнях; В-ПК-4[1] - Владеть
лазерных технологии			
			методами анализа и
			расчета, навыками
			конструирования и
			проектирования в
			соответствии с
			техническим заданием
			типовых систем,
			приборов, деталей и
			узлов на
			схемотехническом и
			элементном уровнях,
			методами расчета и
			проектирования
			деталей и узлов
			приборов и установок с
			использованием
			стандартных средств
		W. 5.11. C. 5	автоматизации
Анализ поставленной	разработка	ПК-5 [1] - Способен к	3-ПК-5[1] - Знать
проектной задачи в	лазерных	участию в монтаже,	общие принципы,
области лазерной	приборов, систем	наладке настройке,	правила и методы
техники и лазерных	и технологий	юстировке,	электрических и
технологий; участие в	различного	испытаниях, сдаче в	оптикофизических
разработке	назначения;	эксплуатацию	измерений;
функциональных и	элементная база	опытных образцов,	У-ПК-5[1] - Уметь
структурных схем на	лазерной техники,	сервисном	выбрать метод
уровне узлов и	технологий,	обслуживании и	монтажа, наладки
элементов лазерных	систем управления	ремонте техники	настройки, юстировки,
систем и технологий	и транспорта		испытаний опытного
по заданным	лазерного	Основание:	образца разработать
техническим	излучения	Профессиональный	схему для монтажа,
требованиям; расчет,		стандарт: 29.002	настройки, юстировки,
проектирование и			испытаний
конструирование в			формулировать и
соответствии с			обосновывать
техническим заданием			требования к
типовых систем,			настройке, наладке,
приборов, деталей и			юстировке и сдаче в
узлов лазерных систем			эксплуатацию
и технологий на			опытных образцов
схемотехническом и			техники;
элементном уровнях;			В-ПК-5[1] - Владеть
разработка и			навыками монтажа,
составление отдельных			наладки, настройки,
видов технической			юстировки и

			U
документации на			проведения испытаний.
проекты, их элементы			
и сборочные единицы;			
участие в монтаже,			
сборке (юстировке),			
испытаниях и сдаче в			
эксплуатацию			
опытных образцов			
лазерной техники и			
отработке элементов и			
этапов процессов			
лазерных технологий			
Анализ поставленной	разработка	ПК-6 [1] - Способен	3-ПК-6[1] - Знать
проектной задачи в	лазерных	проводить поверку,	общие принципы,
области лазерной	приборов, систем	наладку и регулировку	правила и методы
техники и лазерных	и технологий	оборудования,	поверки, наладки и
технологий; участие в	различного	настройку	регулировки
разработке	назначения;	программных средств,	оборудования,
функциональных и	элементная база	используемых для	настройки
функциональных и структурных схем на	лазерной техники,	разработки,	<u> </u>
	лазернои техники, технологий,	разраоотки, производства и	программных средств; У-ПК-6[1] - Уметь
уровне узлов и	I -	•	
элементов лазерных	систем управления	настройки приборной	подготавливать
систем и технологий	и транспорта	техники	испытательное
по заданным	лазерного		оборудование и
техническим	излучения	Основание:	измерительную
требованиям; расчет,		Профессиональный	аппаратуру, выбрать
проектирование и		стандарт: 29.004	метод поверки,
конструирование в			наладки и регулировки
соответствии с			оборудования,
техническим заданием			настройки
типовых систем,			программных средств
приборов, деталей и			;
узлов лазерных систем			В-ПК-6[1] - Владеть
и технологий на			навыками
схемотехническом и			тестирования
элементном уровнях;			оборудования,
разработка и			настройки
составление отдельных			программных средств
видов технической			
документации на			
проекты, их элементы			
и сборочные единицы;			
участие в монтаже,			
сборке (юстировке),			
испытаниях и сдаче в			
эксплуатацию			
опытных образцов			
лазерной техники и			
отработке элементов и			
этапов процессов			
лазерных технологий			

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Цоппориомия/	20 your poortymovy (100 =)	Волитото и учет на политото н
Направления/цели	Задачи воспитания (код)	Воспитательный потенциал
воспитания	G	дисциплин
Профессиональное	Создание условий,	1.Использование
воспитание	обеспечивающих, формирование	воспитательного потенциала
	научного мировоззрения, культуры	дисциплин/практик «Научно-
	поиска нестандартных научно-	исследовательская работа»,
	технических/практических решений,	«Проектная практика»,
	критического отношения к	«Научный семинар» для:
	исследованиям лженаучного толка	- формирования понимания
	(B19)	основных принципов и
		способов научного познания
		мира, развития
		исследовательских качеств
		студентов посредством их
		вовлечения в
		исследовательские проекты по
		областям научных
		исследований. 2.Использование
		воспитательного потенциала
		дисциплин "История науки и
		инженерии", "Критическое
		мышление и основы научной
		коммуникации", "Введение в
		специальность", "Научно-
		исследовательская работа",
		"Научный семинар" для:
		- формирования способности
		отделять настоящие научные
		исследования от лженаучных
		посредством проведения со
		студентами занятий и
		регулярных бесед;
		- формирования критического
		мышления, умения
		рассматривать различные
		исследования с экспертной
		позиции посредством
		обсуждения со студентами
		современных исследований,
		1
		исторических предпосылок появления тех или иных
Профессионаличес	Сордания усторий	открытий и теорий. 1.Использование
Профессиональное	Создание условий,	
воспитание	обеспечивающих, формирование	воспитательного потенциала
	творческого	дисциплин профессионального
	инженерного/профессионального	модуля для развития навыков
	мышления, навыков организации	коммуникации, командной
	коллективной проектной	работы и лидерства,
	деятельности (В22)	творческого инженерного
		мышления, стремления

следовать в профессиональной деятельности нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для: - формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными компетентностными и эмоциональными свойствами членов проектной группы.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения компетенции
	7 Семестр						
1	Раздел 1	1-8	16/0/0		25	КИ-8	3-ПК-1, У-ПК-1,

				•			
							В-ПК-1,
							3-ПК-2,
							У-ПК-2,
							В-ПК-2,
							3-ПК-2.6,
							У-ПК-2.6,
							В-ПК-2.6,
							3-ПК-3,
							У-ПК-3,
							В-ПК-3,
							3-ΠK-4,
							У-ПК-4,
							В-ПК-4,
							3-ПК-5,
							У-ПК-5,
							9-ПК-3, В-ПК-5,
							3-ПК-3, 3-ПК-6,
							У-ПК-6,
	D2	0.16	16/0/0		25	ICIA 16	В-ПК-6
2	Раздел 2	9-16	16/0/0		25	КИ-16	3-ПК-1,
							У-ПК-1,
							В-ПК-1,
							3-ПК-2,
							У-ПК-2,
							В-ПК-2,
							3-ПК-2.6,
							У-ПК-2.6,
							В-ПК-2.6,
							3-ПК-3,
							У-ПК-3,
							В-ПК-3,
							3-ПК-4,
							У-ПК-4,
							В-ПК-4,
							3-ПК-5,
							У-ПК-5,
							В-ПК-5,
							3-ПК-6,
							У-ПК-6,
							В-ПК-6
	Итого за 7 Семестр		32/0/0		50		
	Контрольные				50	3	3-ПК-1,
	мероприятия за 7						У-ПК-1,
	Семестр						В-ПК-1,
							3-ПК-2,
							У-ПК-2,
							В-ПК-2,
							3-ПК-2.6,
							У-ПК-2.6,
							В-ПК-2.6,
							3-ПК-3,
							У-ПК-3,
1						l	- 1111 5,

		1	T			
						В-ПК-3,
						3-ПК-4,
						У-ПК-4,
						В-ПК-4,
						3-ПК-5,
						У-ПК-5,
						В-ПК-5,
						3-ПК-6,
						У-ПК-6,
						В-ПК-6
	8 Семестр					
1	Раздел 1	1-8	16/0/0	25	КИ-6	3-ПК-1,
						У-ПК-1,
						В-ПК-1,
						3-ПК-2,
						У-ПК-2,
						В-ПК-2,
						3-ПК-2, 3-ПК-2.6,
						У-ПК-2.6,
						B-ΠK-2.6,
						3-ПК-2.0, 3-ПК-3,
						У-ПК-3,
						В-ПК-3,
						3-ПК-4,
						У-ПК-4,
						В-ПК-4,
						3-ПК-5,
						У-ПК-5,
						В-ПК-5,
						3-ПК-6,
						У-ПК-6,
						В-ПК-6
2	Раздел 2	9-12	8/0/0	25	КИ-12	3-ПК-1,
						У-ПК-1,
						В-ПК-1,
						3-ПК-2,
						У-ПК-2,
						В-ПК-2,
						3-ПК-2.6,
						У-ПК-2.6,
						В-ПК-2.6,
						3-ПК-3,
						У-ПК-3,
						В-ПК-3,
						3-ПК-4,
						У-ПК-4,
						B-ΠK-4,
						В-ПК-4, З-ПК-5,
						· ·
						У-ПК-5,
						В-ПК-5,
						3-ПК-6,
						У-ПК-6,

				В-ПК-6
Итого за 8 Семестр	24/0/0	50		
Контрольные		50	Э	3-ПК-1,
мероприятия за 8				У-ПК-1,
Семестр				В-ПК-1,
				3-ПК-2,
				У-ПК-2,
				В-ПК-2,
				3-ПК-2.6,
				У-ПК-2.6,
				В-ПК-2.6,
				3-ПК-3,
				У-ПК-3,
				В-ПК-3,
				3-ПК-4,
				У-ПК-4,
				В-ПК-4,
				3-ПК-5,
				У-ПК-5,
				В-ПК-5,
				3-ПК-6,
				У-ПК-6,
				В-ПК-6

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозначение	Полное наименование
КИ	Контроль по итогам
3	Зачет
Э	Экзамен

КАЛЕНДАРНЫЙ ПЛАН

Недели	Темы занятий / Содержание		Пр./сем.,	Лаб.,	
		час.	час.	час.	
	7 Семестр	32	0	0	
1-8	Раздел 1	16	0	0	
1	Кристаллические структуры	Всего а	удиторных	часов	
	Основные определения, решетка Браве, элементарная	2	0	0	
	ячейка, примитивная ячейка, ячейка Вигнера-Зейтца,		Онлайн		
	базисные векторы. Примеры ОЦК и ГЦК решеток,		0	0	
	координационные сферы, коэффициент заполнения. Оси				
	симметрии.				
2 - 3	Типы химических связей в твердых телах		Всего аудиторных часов		
	Классификация твердых тел. Молекулярные кристаллы, их	4	0	0	
	основные физические свойства. Потенциал Леннарда-		I		
	Джонса, когезионная энергия, модуль упругости. Ионные	0	0	0	

^{** –} сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

		T	1	
	кристаллы, их основные физические свойства. Потенциал			
	Борна-Майера, постоянная Маделунга, модуль упругости.			
	Валентные и полупроводниковые кристаллы, их основные			
	физические свойства. Металлические кристаллы, их			
	основные физические свойства. Кристаллы с водородной			
	связью, квантовые кристаллы			
4	Обратная решетка	Всего	аудиторнь	их часов
	Определение, базисные векторы, объем, атомная	2	0	0
	плоскость, индексы Миллера. Условие дифракции.	Онлай	Н	
	Построение Эвальда, Бриллиюна. Основные методы	0	0	0
	определения кристаллических структур из рентгеновского			
	рассеяния (Лауэ, качаний, Дебай-Шерер).			
5	Дефекты в кристаллах	Всего	аудиторнь	их часов
	Фононы. Дефекты по Шоттки, по Френкелю. F - центры.	2	0	0
	Дефекты в ионных кристаллах. Дислокации, поляроны и	Онлай	Н	'
	экситоны.	0	0	0
6 - 7	Фононы - колебания кристаллической решетки	Всего	аудиторнь	их часов
	Спектры фононов. Основные свойства фононных мод.	4	0	0
	Оптические, акустические ветви, поляризация. Способы	Онлай	H	I
	определения спектров из взаимодействия с	0	0	0
	электромагнитной волной, из нейтронного рассеяния.			
	Модель Дебая и Эйнштейна. Проблемы классической			
	модели. Теплоемкость и способы ее определения. Вклад			
	электронной подсистемы. Решеточная теплопроводность			
	кристаллов. Температурная зависимость. Процессы			
	переброса. Параметры Грюнайзена.			
8	Взаимодействие излучения с периодически	Всего аудиторных часов		
	расположенными в пространстве центрами рассеяния	2	0	0
	Амплитуда рассеяния. Атомный, структурный форм-	Онлай	Н	
	факторы. Влияние разупорядочения. Фактор Дебая-	0	0	0
	Валлера. Определение фононной плотности состояний			
9-16	Раздел 2	16	0	0
9-16 9 - 10			0 аудиторнь	
	Раздел 2			
	Раздел 2 Металлическая связь	Всего	аудиторны 0	их часов
	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность	Всего 4	аудиторны 0	их часов
	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия	Всего 4 Онлай	аудиторнь 0 н	их часов
	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла.	Всего 4 Онлай	аудиторнь 0 н	их часов
	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель	Всего 4 Онлай 0	аудиторнь 0 н	0 0
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца.	Всего 4 Онлай 0	аудиторнь 0 н 0	0 0
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость.	Всего 4 Онлай 0	аудиторны 0 н 0 аудиторны 0	о по
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах	Всего 4 Онлай 0 Всего 2	аудиторны 0 н 0 аудиторны 0	о по
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время	Всего 4 Онлай 0 Всего 2 Онлай	аудиторны 0 н 0 аудиторны 0 аудиторны 0	о по
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-	Всего 4 Онлай 0 Всего 2 Онлай 0	аудиторны 0 н 0 аудиторны 0 аудиторны 0	ом часов о о о о о о о о о о о о о о о о о о
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-Франца. Фононы в металле.	Всего 4 Онлай 0 Всего 2 Онлай 0	аудиторны 0 н 0 аудиторны 0 н 0	ом часов о о о о о о о о о о о о о о о о о о
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-Франца. Фононы в металле. Носители заряда в зонной схеме	Всего 4 Онлай 0 Всего 2 Онлай 0 Всего	аудиторны	О О О О О О О О О О О О О О О О О О О
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-Франца. Фононы в металле. Носители заряда в зонной схеме Движение электрона в периодическом потенциале.	Всего 4 Онлай 0 Всего 2 Онлай 0 Всего 2 2 Онлай 2	аудиторны	О О О О О О О О О О О О О О О О О О О
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-Франца. Фононы в металле. Носители заряда в зонной схеме Движение электрона в периодическом потенциале. Приближение сильной связи. Зоны Бриллюэна.	Всего 4 Онлай 0 Всего 2 Онлай 0 Всего 2 Онлай Онлай	аудиторны	о по
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-Франца. Фононы в металле. Носители заряда в зонной схеме Движение электрона в периодическом потенциале. Приближение сильной связи. Зоны Бриллюэна. Эффективная масса. Блоховские электроны. Понятие о дырке. Проводимость в зонной схеме.	Всего 4 Онлай 0 Всего 2 Онлай 0 Всего 2 Онлай 0 Онлай 0	аудиторны	о по
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гв. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-Франца. Фононы в металле. Носители заряда в зонной схеме Движение электрона в периодическом потенциале. Приближение сильной связи. Зоны Бриллюэна. Эффективная масса. Блоховские электроны. Понятие о	Всего 4 Онлай 0 Всего 2 Онлай 0 Всего 2 Онлай 0 Онлай 0	аудиторны	о по
9 - 10	Раздел 2 Металлическая связь Электронный газ и статистика Ферми-Дирака. Плотность электронных состояний. Уровень Ферми. Средняя энергия электронов. Теплоемкость. Когезионная энергия металла. Параметр гs. Кинетические явления в металле. Модель Друде-Лоренца. Кинетические явления в металлах Электропроводность, диэлектрическая проницаемость. Длина свободного пробега. Скин-эффект. Время релаксации и концентрация примесей. Закон Видемана-Франца. Фононы в металле. Носители заряда в зонной схеме Движение электрона в периодическом потенциале. Приближение сильной связи. Зоны Бриллюэна. Эффективная масса. Блоховские электроны. Понятие о дырке. Проводимость в зонной схеме. Полупроводники	Всего 4 Онлай 0 Всего 2 Онлай 0 Всего 2 Онлай 0 Всего	аудиторны	О О О О О О О О О О О О О О О О О О О

	Томпородурую дорумую долу Прункому й полудрородуную				
	Температурная зависимость. Примесный полупроводник.				
	Температурная зависимость концентрации носителей.				
	Примесная зона. Полуметаллические состояния.				
	Равновесные и неравновесные носители заряда. Время				
	жизни. Квазиуровень Ферми. Рекомбинация. Линейная и				
	квадратичная. Поглощение света. Прямые и непрямые				
	переходы. Контактная разность потенциала. Генерация,				
	диффузия и дрейф в примесном полупроводнике.				
15	Термоэлектрические эффекты	Всего	Всего аудиторных часов		
	Эффект Зеебека. Эффект Пельтье. Эффект Томпсона.	2	0	0	
	Вывод формулы для коэффициента термоЭДС.	Онлай	ÍН		
		0	0	0	
16	Гетероструктуры на основе полупроводников	Всего	аудитор	ных часов	
	Уровни размерного квантования и двумерный	2	0	0	
	электронный газ. Сверхрешетки.	Онлай	<u> </u>		
	ontarpointain rust exeptipointain	0	0	0	
	8 Семестр	24	0	0	
1 0	•	16	0	0	
1-8	Раздел 1		-		
1	Контактные явления в полупроводниках			оных часов	
	Контакт металл- полупроводник. Область обедненного	2	0	0	
	заряда. Запорный слой. Антизапорный слой. Барьер	Онлаї	-		
	Шоттки. Элементарные представления о р-п - переходе.	0	0	0	
	Выпрямление. Вывод вольтамперной характеристики.				
	Квазиуровень Ферми на границе раздела. Туннельные				
	диоды. Гетеропереход.				
2	Полупроводники в сильных электрических полях	Всего	аудитор	ных часов	
	ВАХ N-типа. Эффект Ганна. Туннельный эффект.	2	0	0	
		Онлай	íн		
		0	0	0	
3	Генерация и рекомбинация	Всего	аудитор	ных часов	
	Излучательная рекомбинация. Безизлучательная	2	0	0	
	рекомбинация. Кинетика носителей заряда. Время жизни.	Онлай			
	Глубокие примеси. Рекомбинация ОЖЭ.	0	0	0	
4				ных часов	
4	Фотопроводимость Фотомагнитный эффект. Вывод формул для ЭДС	2	аудитор	0	
	фотомагнитный эффект. Вывод формул для Эде фотомагнитного эффекта. Фотомагнитомеханический		U	10	
	эффект. Люминесценция. Флюоресценция. Механизмы	Онлай			
	11	0	0	0	
	люминесценции в полупроводниках.	D			
5	Сегнетоэлектричество			оных часов	
	Сегнетова соль. Физические основы. Применение.	2	0	0	
		Онлаї	1		
		0	0	0	
6	Эффект Холла	Всего	аудитор	ных часов	
	Коэффициент Холла и магнитосопротивление. Угол		0	0	
	Холла. Методы измерения и интерпретации	Онлай	ÍН	•	
	экспериментальных данных. Особенности поведения	0	0	0	
	магнитосопротивления для многозонных веществ.				
	Квантовый эффект Холла. Эффект Эттингсгаузена				
7	Циклотронный резонанс	Recero	аулитот	ных часов	
,	Циклотронный резонанс, эксперимент Азбеля-Канера.	2	0	0	
	Эффективная циклотронная масса. Получение			U	
	уффективная циклотронная масса. Получение	Онлаї	1H		

	информации о зонной структуре.	0	0	0	
8	Эффект де-Гааза-ван-Альфена		Всего аудиторных часов		
	Уровни Ландау. Условия проведения эксперимента.	2	0	0	
	Построение поверхностей Ферми. Гигантские квантовые		ÍН		
	осцилляции поглощения ультразвука в металлах.	0	0	0	
	Восстановление зонной структуры.				
9-12	Раздел 2	8	0	0	
9	Гамма-резонансная спектроскопия	Всего	Всего аудиторных часов		
	Эффект Мессбауэра, "мессбауэровские" изотопы.	2	0	0	
	Интерпретация мессбауэровских спектров. Изомерный	Онлай	ÍН		
	сдвиг. Квадрупольное расщепление, расщепление уровней	0	0	0	
	ядра в магнитном поле соседних электронов. Фактор				
	Лэмба-Мессбауэра. Влияние температуры на				
	мессбауэровские спектры.				
10	Аннигиляция позитронов в веществе	Всего	аудитор	ных часов	
	Диагностика электронной структуры. Основы метода.	2	0	0	
	Источники позитронов. Схема эксперимента для	Онлай	ÍН		
	измерений двухквантовой аннигиляции позитронов.	0	0	0	
	Интерпретация экспериментальных данных				
11				ных часов	
	Метод ядерного магнитного резонанса в физике твердого	2	0	0	
			Онлайн		
	поперечная релаксация. Ядра, представляющие интерес	0	0	0	
	для ЯМР-спектроскопии. Интерпретация спектров ЯМР:				
	положение, интенсивность, дисперсия тонкой структуры.				
	Сдвиг Найта. Метод электронного парамагнитного				
	резонанса. Основы метода. Отличия метода ЭПР от ЯМР-				
	метода. Спектры ЭПР, спин-решеточная и спин-спиновая				
	релаксация. Интерпретация спектров ЭПР.				
12	Двойные резонансы и методы EXAFS			ных часов	
	Акустический парамагнитный резонанс, акустический	2	0	0	
	ядерный магнитный резонанс, двойной электронно-	Онлай			
	ядерный резонанс. Общие представления.	0	0	0	
	Фотоэмиссионные и инверсные фотоэмиссионные				
	спектры. Методы XANES, EXAFS - исследование				
	электронной подсистемы твердого тела.				

Сокращенные наименования онлайн опций:

Обозначение	Полное наименование	
ЭК	Электронный курс	
ПМ	Полнотекстовый материал	
ПЛ	Полнотекстовые лекции	
BM	Видео-материалы	
AM	Аудио-материалы	
Прз	Презентации	
T	Тесты	
ЭСМ	Электронные справочные материалы	
ИС	Интерактивный сайт	

Недели	Темы занятий / Содержание				
	7 Семестр				
1 - 8	Кристаллические структуры				
	Основные определения. Типы химических связей в твердых телах. Обратная решетка.				
	Условие дифракции. Дефекты в кристаллах. Фононы. Амплитуда рассеяния.				
	Атомный, структурный форм-факторы.				
9 - 16	Электронная подсистема				
	Металлическая связь. Электронный газ и статистика Ферми-Дирака. Кинетические явления в металлах. Носители заряда в зонной схеме. Зоны Бриллюэна. Эффективная				
	масса. Полупроводники. Термоэлектрические эффекты. Гетероструктуры на основе				
	полупроводников.				
	8 Семестр				
1 - 6	Полупроводники				
	Контактные явления в полупроводниках. Генерация и рекомбинация.				
	Фотопроводимость. Эффект Холла.				
					
	Экспериментальные методы исследования твердых тел				
	Циклотронный резонанс. Эффект де-Гааза-ван-Альфена. Гамма-резонансная				
	спектроскопия. Аннигиляция позитронов в веществе. Ядерный магнитный резонанс.				
	Электронный парамагнитный резонанс. Фотоэмиссионные и инверсные				
	фотоэмиссионные спектры.				

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Используются презентации, обсуждения последних научных работ, новые модели в физике конденсированного состояния. Обязательным условием успешного освоения дисциплины является самостоятельная работа студентов, выполнение индивидуальных заданий, работа с литературой.

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы	Аттестационное	Аттестационное
	освоения	мероприятие (КП 1)	мероприятие (КП 2)
ПК-1	3-ПК-1	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	У-ПК-1	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	В-ПК-1	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
ПК-2	3-ПК-2	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	У-ПК-2	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	В-ПК-2	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
ПК-2.6	3-ПК-2.6	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	У-ПК-2.6	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	В-ПК-2.6	3, КИ-8, КИ-16	Э, КИ-6, КИ-12

ПК-3	3-ПК-3	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	У-ПК-3	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	В-ПК-3	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
ПК-4	3-ПК-4	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	У-ПК-4	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	В-ПК-4	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
ПК-5	3-ПК-5	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	У-ПК-5	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	В-ПК-5	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
ПК-6	3-ПК-6	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	У-ПК-6	3, КИ-8, КИ-16	Э, КИ-6, КИ-12
	В-ПК-6	3, КИ-8, КИ-16	Э, КИ-6, КИ-12

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов	Оценка по 4-ех	Оценка	Требования к уровню освоению
	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89		В	Оценка «хорошо» выставляется студенту,
75-84	1	С	если он твёрдо знает материал, грамотно и
	4 – «хорошо»		по существу излагает его, не допуская
70-74	-	D	существенных неточностей в ответе на вопрос.
65-69		-	Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно» выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

- 1. ЭИ А 71 Введение в теорию полупроводников : учебное пособие, Ансельм А. И., Санкт-Петербург: Лань, 2016
- 2. 538.9 П30 Основы физики конденсированного состояния : учебное пособие, Петров Ю.В., Долгопрудный: Интеллект, 2013
- 3. ЭИ П 19 Полупроводниковые приборы : Учебное пособие для вузов, Пасынков В. В., Чиркин Л. К., Санкт-Петербург: Лань, 2022
- 4. 539.2 Н63 Сборник задач по курсу "Физика твердого тела" : , Маймистов А.И., Николаев И.Н., Москва: НИЯУ МИФИ, 2009
- 5. ЭИ Н63 Сборник задач по курсу "Физика твердого тела" : , Маймистов А.И., Николаев И.Н., Москва: МИФИ, 2009
- 6. 538.9 С24 Сверхтекучесть и бозе-конденсация : учебное пособие для вузов, Маймистов А.И. [и др.], Москва: МИФИ, 2008
- 7. 539.2 К31 Современные проблемы физики твердого тела Ч.1 Целый и дробный квантовые эффекты Холла, Кашурников В.А., Москва: НИЯУ МИФИ, 2011
- 8. 530 Л22 Теоретическая физика Т.3 Квантовая механика. Нерелятивистская теория, Ландау Л.Д., Москва: Физматлит, 2024
- 9. 53 Л22 Теоретическая физика Т.5 Статистическая физика. Ч.1, Ландау Л.Д., Москва: Физи
атлит, 2013
- 10. ЭИ К12 Теоретическая физика твердого тела: , Собакин В.Н., Каган Ю.М., Ивлиев С.В., М.: МИФИ, 2009
- 11. ЭИ Ш 18 Физика полупроводников : учебное пособие, Шалимова К. В., Санкт-Петербург: Лань, 2022
- 12. 620 Ф50 Физическое материаловедение Т.1 Физика твердого тела, , Москва: НИЯУ МИФИ, 2012
- 13. 536 К31 Численные методы квантовой статистики: , Красавин А.В., Кашурников В.А., Москва: Физматлит, 2010

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

1. 533 Ч-43 Введение в физику плазмы: , Чен Ф.Ф., М.: Мир, 1987

- 2. 539.2 К45 Введение в физику твердого тела:, Киттель Ч., М.: Наука, 1978
- 3. 539.2 К45 Введение в физику твердого тела:, Киттель Ч., Москва: Физматлит, 1963
- 4. 530.5 К45 Введение в физику твердого тела:, Киттель Ч., М.: Физматгиз, 1962
- 5. 539.2 К45 Введение в физику твердого тела:, Киттель Ч., М.: МедиаСтар, 2006
- 6. 539.2 К45 Введение в физику твердого тела:, Киттель Ч., М.: Гостехиздат, 1957
- 7. 538.9 Б87 Квазичастицы в физике конденсированного состояния:, Кульбачинский В.А., Брандт Н.Б., М.: Физматлит, 2005
- 8. 621.38 О-62 Оптоэлектроника Ч.1 Физические основы полупроводниковой оптоэлектроники. Когерентная оптоэлектроника, , Москва: Янус-К, 2010
- 9. 530 3-17 Принципы теории твердого тела:, Займан Дж., Москва: Мир, 1966
- 10. 53 3-17 Принципы теории твердого тела:, Займан Дж., Москва: Мир, 1974
- 11. 539.2 Н63 Сборник задач по курсу "Физика твердого тела" : , Маймистов А.И., Николаев И.Н., М.: МИФИ, 1998
- 12. 539.2 Н63 Сборник задач по курсу "Физика твердого тела" : Учеб. пособие, Маймистов А.И., Николаев И.Н., М.: МИФИ, 1990
- 13. 539.2 М13 Теория твердого тела:, Маделунг О., М.: Наука, 1980
- 14. 621.37 С80 Физика полупроводников:, Стильбанс Л.С., М.: Сов. радио, 1967
- 15. 530 У98 Физика твердого тела:, Томсон Р., Уэрт Ч., М.: Мир, 1966
- 16. 539.2 Г95 Физика твердого тела : учеб. пособие для техн. ун-тов, Гуревич А.Г., СПб: Невский диалект; БХВ-Петербург, 2004
- 17. 539.2 А98 Физика твердого тела Т.1, Ашкрофт Н., М.: Мир, 1979
- 18. 539.2 А98 Физика твердого тела Т.2, Ашкрофт Н., М.: Мир, 1979
- 19. 539.2 М13 Физика твердого тела. Локализованные состояния : , Маделунг О., М.: Наука, 1985
- 20. 539.2 Б87 Экспериментальные методы исследования энергетических спектров электронов и фононов в металлах : Физические основы, Чудинов С.М., Брандт Н.Б., М.: МГУ, 1983

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

- 1. Freemat (http://freemat.sourceforge.net)
- 2. Компилятор Fortran (http://gcc.gnu.org/wiki/GFortran)

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

1. сайт кафедры №70 НИЯУ МИФИ (http://kaf70.mephi.ru/)

- 2. сайт Американского физического общества (http://www.aps.org)
- 3. сайт издательства Elsevier ()

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

необходимо твердо усвоить современные представления о кристаллических структурах, о методах их экспериментального определения, о фононной и электронной подсистемах твердого тела, о классификации твердых тел. Следует изучить основные методы определения фононного спектра, плотности фононных состояний. Понимать значение фактора Дебая-Валлера в амплитуде рассеяния. Иметь представление о дефектах структуры, об элементарных возбуждениях. Знать особенности ионной связи, расчета постоянной Маделунга.

Необходимо уметь оценивать характерные параметры различных подсистем в конденсированной фазе, уметь ориентироваться в многообразии физических явлений твердого состояния. Знать особенности электронной подсистемы твердого тела, вид блоховской волновой функции, особенности зонной структуры и движения блоховского электрона во внешних полях. Уметь объяснить различие металла и диэлектрика, полуметалла и полупроводника. Рассчитывать статистику электронов и дырок, понимать значение эффективной массы для динамики носителей заряда. Знать основные методы определения концентрации носителей и знака их заряда, методы расчета зонной структуры, примесных состояний.

Небходимо владеть современными теоретическими представлениями при описании взаимодействий атомов и электронных оболочек в кристалле, о термодинамических, оптических, магнитных и электрофизических свойствах твердых тел, а также представлять основные резонансно-магнитные и другие экспериментальные методы.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Необходимо дать студентам основные представления об электронной и фононной подсистемах твердого тела.

Курс опирается на материал следующих дисциплин, читаемых студентам физикоматематических специальностей: уравнения математической физики, квантовая механика, макроэлектродинамика, теория вероятностей, статистическая физика и термодинамика. Для успешного освоения дисциплины необходимы знания по курсам общей физики и университетскому курсу математики. Необходимо проверить умение работать с операторами, знать дифференциальное и интегральное исчисление, тензорный и векторный анализ, статистику и термодинамику, электричество и магнетизм, в том числе в материальных средах. Необходимо, чтобы студенты ориентировались в задачах квантовой механики и статистической

физики, основные квантовые и классические распределения, элементы квантовой статистики. В процессе освоения материала следует дать основные представления об электронной и фононной классификации подсистемах твердого тела. межатомных связей. слагающих конденсированное состояние, о различных методах экспериментального исследования этих подсистем. Следует рассказать об основных общепринятых теоретических представлениях о физических процессах в твердых телах, об отличии твердого состояния от других агрегатных состояний вещества. Необходимо научить понятию о дальнем и ближнем порядке, о дефектах кристаллической структуры, о кинетических и термодинамических свойствах и моделях, описывающих эти свойства. Необходимо обсудить основные методы исследования структуры твердого тела: рентгеновские и нейтронные, методы измерения фононных спектров. Научить методам изучения зонной структуры: циклотронный резонанс, эффект де-Гааза-ван-Альфена, аннигиляция позитронов, фотоэмиссия, ЯМР и ЭПР, эффект Мессбауэра, эффект Холла. Достаточно подробно рассмотреть физику полупроводников, диффузию и дрейф носителей заряда, рекомбинацию и генерацию, контактные явления, поглощение, особенности эффекта Холла в полупроводниках. Рассказать о примесных полупроводниках, о донорах и акцепторах, о температурной зависимости проводимости, о квазиуровнях Ферми.

Автор(ы):

Кашурников Владимир Анатольевич, д.ф.-м.н., профессор

Иванов Андрей Анатольевич, к.ф.-м.н., доцент