Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский ядерный университет «МИФИ»

ИНСТИТУТ НАНОТЕХНОЛОГИЙ В ЭЛЕКТРОНИКЕ, СПИНТРОНИКЕ И ФОТОНИКЕ КАФЕДРА МИКРО- И НАНОЭЛЕКТРОНИКИ

ОДОБРЕНО НТС ИНТЭЛ

Протокол № 2

от 26.04.2023 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ

МАТЕРИАЛОВЕДЕНИЕ В МИКРО- И НАНОЭЛЕКТРОНИКЕ

Направление подготовки (специальность)

[1] 11.03.04 Электроника и наноэлектроника

Семестр	Трудоемкость, кред.	Общий объем курса, час.	Лекции, час.	Практич. занятия, час.	Лаборат. работы, час.	В форме практической полготовки/ В		КСР, час.	Форма(ы) контроля, экз./зач./КР/КП
5, 6	2	72	30	0	15		27	0	3
Итого	2	72	30	0	15	0	27	0	

АННОТАЦИЯ

Дисциплина описывает свойства и технологии изготовления полупроводников, проводящих и диэлектрических материалов, используемых в технологии микро- и наноиндустрии

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Целью освоения учебной дисциплины является получение знаний по свойствам и технологии изготовления полупроводников, проводящих и диэлектрических материалов, используемых в технологии изготовления интегральных микросхем

2. МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВО

Дисциплина относится к циклу общепрофессиональных дисциплин, обеспечивающих подготовку в области технологии изготовления интегральных схем. Ее изучение базируется на следующих курсах:

- Математика;
- Общая химия;
- Общая электротехника и электроника: основы электроники;
- Основы физики твердого тела.

Для освоения данной дисциплины необходимо:

- знать физические основы микроэлектроники, теорию работы и основные характеристики полупроводниковых приборов;
 - владеть навыками решения обыкновенных дифференциальных уравнений;
 - знать основы зонной теории полупроводников;
 - уметь составлять различные химические реакции.

Освоение данной дисциплины необходимо при последующем изучении дисциплин:

- Технология интегральных микросхем;
- Наноэлектронные технологии;
- Основы оптоэлектроники.

3. ФОРМИРУЕМЫЕ КОМПЕТЕНЦИИ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Универсальные и(или) общепрофессиональные компетенции:

Код и наименование компетенции Код и наименование индикатора достижения компетенции

Профессиональные компетенции в соотвествии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	Код и наименование
профессиональной	область знания	профессиональной	индикатора
деятельности (ЗПД)		компетенции;	достижения

Основание профессиональной (профессиональный компетенции стандарт-ПС, анализ опыта) научно-исследовательский ПК-2 [1] - Способен к 3-ПК-2[1] - Знания в электронные математическое моделирование приборы, экспериментальной области устройства, проверке выбранных электронных материаловедения приборов, схем и установки, технологических наноструктурированных решений производства устройств различного методы их материалов.; функционального приборов и У-ПК-2[1] - Умение исследования, назначения на базе исследованию экспериментально математические стандартных пакетов параметров исследовать параметры модели автоматизированного наноструктурных наноструктурированных проектирования; материалов; материалов в В-ПК-2[1] - Владение участие в соответствии с планировании и утвержденной современными проведении методикой, к нанотехнологиями и экспериментов по разработке методик и методиками измерений заданной методике, техническому в области микро- и обработка руководству наноэлектроники. результатов с экспериментальной применением проверкой технологических современных информационных процессов и технологий и исследованием технических средств; параметров анализ научнонаноструктурированных технической материалов информации, отечественного и Основание: зарубежного опыта Профессиональный по тематике стандарт: 40.104 исследования; участие в подготовке и подаче заявок по перспективным проектам, грантам в рамках проводимых открытых конкурсов производственно-технологический

внедрение	материалы,	ПК-8 [1] - Способен	3-ПК-8[1] - Знание
результатов	компоненты,	выполнять постановку и	технологий
исследований и	электронные	эксплуатацию	сверхбольших
разработок в	приборы,	определенного	интегральных схем,
производство;	устройства,	технологического	планарных и иных
выполнение работ по	установки,	процесса или блока	технологий электроники
технологической	методы их	технологических	и наноэлектроники;
подготовке	исследования,	операций по	У-ПК-8[1] - Умение
производства	проектирования и	производству	выполнять постановку и
материалов и изделий	конструирования,	материалов и изделий	эксплуатацию
электронной	технологические	электронной техники	определенного

техники; проведение технологических процессов производства материалов и изделий электронной техники; контроль за соблюдением технологической дисциплины и приемов энерго - и ресурсосбережения; подготовка документации и участие в работе системы менеджмента качества на предприятии; организация метрологического обеспечения производства материалов и изделий электронной техники внедрение результатов исследований и разработок в производство; выполнение работ по технологической подготовке производства материалов и изделий электронной техники; проведение технологических процессов производства материалов и изделий электронной техники; контроль за соблюдением технологической дисциплины и приемов энерго - и ресурсосбережения; подготовка документации и участие в работе системы

процессы производства, диагностическое и технологическое оборудование, алгоритмы решения типовых задач

Основание: Профессиональный стандарт: 29.008 технологического процесса или блока технологических операций по производству СБИС, интегральных СВЧ-систем и других изделий электронной техники.; В-ПК-8[1] - Владение технологическими операциями по производству материалов и изделий электронной техники

материалы, компоненты, электронные приборы, устройства, установки, методы их исследования, проектирования и конструирования, технологические процессы производства, диагностическое технологическое оборудование, алгоритмы решения типовых задач

ПК-9 [1] - Способен выполнять определенный тип измерительных или контрольных операций при исследовании параметров полупроводниковых приборов и устройств или в технологическом процессе по производству материалов и изделий электронной техники

Основание: Профессиональный стандарт: 29.002 3-ПК-9[1] - Знание параметров полупроводниковых приборов аналоговой, цифровой, радиочастотной и СВЧэлектроники.; У-ПК-9[1] - Умение выполнять исследования параметров полупроводниковых приборов и устройств в микро- и наноэлектронике; В-ПК-9[1] - Владение методами измерений в технологическом процессе по производству материалов и изделий электронной техники

менеджмента качества на предприятии; организация метрологического обеспечения производства материалов и изделий электронной техники внедрение	материалы,	ПК-10 [1] - Способен к	3-ПК-10[1] - Знание
результатов исследований и разработок в производство; выполнение работ по технологической подготовке производства материалов и изделий электронной техники; проведение технологических процессов производства материалов и изделий электронной техники; контроль за соблюдением технологической дисциплины и приемов энерго - и ресурсосбережения; подготовка документации и участие в работе системы менеджмента качества на предприятии; организация метрологического обеспечения производства материалов и изделий электронной техники	компоненты, электронные приборы, устройства, установки, методы их исследования, проектирования и конструирования, технологические процессы производства, диагностическое и технологическое оборудование, алгоритмы решения типовых задач	модернизации существующих и внедрению новых методов и оборудования для измерений параметров наноматериалов и наноструктур Основание: Профессиональный стандарт: 29.007	физических основ современных микро- и нанотехнологий, технологий гетероструктурной и СВЧ-электроники.; У-ПК-10[1] - Умение творчески применять современное оборудование для измерений параметров наноматериалов и наноструктур; В-ПК-10[1] - Владение методами измерений параметров наноматериалов и наноструктур

4. ВОСПИТАТЕЛЬНЫЙ ПОТЕНЦИАЛ ДИСЦИПЛИНЫ

Направления/цели	Задачи воспитания (код)	Воспитательный потенциал дисциплин
воспитания		
Профессиональное и	Создание условий,	1.Использование воспитательного
трудовое воспитание	обеспечивающих,	потенциала дисциплин

формирование глубокого понимания социальной роли профессии, позитивной и активной установки на ценности избранной специальности, ответственного отношения к профессиональной деятельности, труду (В14)

естественнонаучного и общепрофессионального модуля для: формирования позитивного отношения к профессии инженера (конструктора, технолога), понимания ее социальной значимости и роли в обществе, стремления следовать нормам профессиональной этики посредством контекстного обучения, решения практико-ориентированных ситуационных задач. - формирования устойчивого интереса к профессиональной деятельности, способности критически, самостоятельно мыслить, понимать значимость профессии посредством осознанного выбора тематики проектов, выполнения проектов с последующей публичной презентацией результатов, в том числе обоснованием их социальной и практической значимости; формирования навыков командной работы, в том числе реализации различных проектных ролей (лидер, исполнитель, аналитик и пр.) посредством выполнения совместных проектов. 2.Использование воспитательного потенциала дисциплины «Экономика и управление в промышленности на основе инновационных подходов к управлению конкурентоспособностью», «Юридические основы профессинальной деятельности» для: формирования навыков системного видения роли и значимости выбранной профессии в социально-экономических отношениях через контекстное обучение

Профессиональное и трудовое воспитание

Создание условий, обеспечивающих, формирование психологической готовности к профессиональной деятельности по избранной профессии (В15)

Использование воспитательного потенциала дисциплин общепрофессионального модуля для: -формирования устойчивого интереса к профессиональной деятельности, потребности в достижении результата, понимания функциональных обязанностей и задач избранной профессиональной деятельности, чувства профессиональной ответственности через выполнение учебных, в том числе практических заданий, требующих строгого

		206 110 1201114 1120011 20111111
		соблюдения правил техники
		безопасности и инструкций по работе с
		оборудованием в рамках лабораторного практикума.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование чувства	профессионального модуля для
	личной ответственности за	формирования чувства личной
	научно-технологическое	ответственности за достижение
	развитие России, за	лидерства России в ведущих научно-
	результаты исследований	технических секторах и
	и их последствия (В17)	фундаментальных исследованиях,
	l , , ,	обеспечивающих ее экономическое
		развитие и внешнюю безопасность,
		посредством контекстного обучения,
		обсуждения социальной и практической
		значимости результатов научных
		исследований и технологических
		разработок. 2.Использование
		воспитательного потенциала дисциплин
		профессионального модуля для
		формирования социальной
		ответственности ученого за результаты
		исследований и их последствия,
		развития исследовательских качеств
		посредством выполнения учебно-
		исследовательских заданий,
		ориентированных на изучение и
		проверку научных фактов, критический
		анализ публикаций в профессиональной
		области, вовлечения в реальные
		междисциплинарные научно-
		исследовательские проекты.
Профессиональное	Создание условий,	Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование	профессионального модуля для
	ответственности за	формирования у студентов
	профессиональный выбор,	ответственности за свое
	профессиональное	профессиональное развитие
	развитие и	посредством выбора студентами
	профессиональные	индивидуальных образовательных
	решения (В18)	траекторий, организации системы
		общения между всеми участниками
		образовательного процесса, в том числе
		с использованием новых
		информационных технологий.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала дисциплин
	формирование навыков	профессионального модуля для
	коммуникации, командной	развития навыков коммуникации,
	работы и лидерства (В20)	командной работы и лидерства,
	1	творческого инженерного мышления,

Профессиональное воспитание

Создание условий, обеспечивающих, формирование способности и стремления следовать в профессии нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения (В21)

стремления следовать в профессиональной деятельности нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для: формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рациональнотехнологических навыков взаимодействия в проектной деятельности эмоциональным эффектом успешного взаимодействия, ощущением роста общей эффективности при распределении проектных задач в соответствии с сильными компетентностными и эмоциональными свойствами членов проектной группы.

1.Использование воспитательного потенциала дисциплин профессионального модуля для развития навыков коммуникации, командной работы и лидерства, творческого инженерного мышления, стремления следовать в профессиональной деятельности нормам поведения, обеспечивающим нравственный характер трудовой деятельности и неслужебного поведения, ответственности за принятые решения через подготовку групповых курсовых работ и практических заданий, решение кейсов, прохождение практик и подготовку ВКР. 2.Использование воспитательного потенциала дисциплин профессионального модуля для: формирования производственного коллективизма в ходе совместного решения как модельных, так и практических задач, а также путем подкрепление рационально-

		технологических навыков
		взаимодействия в проектной
		деятельности эмоциональным
		эффектом успешного взаимодействия,
		ощущением роста общей
		эффективности при распределении
		проектных задач в соответствии с
		сильными компетентностными и
		эмоциональными свойствами членов
		проектной группы.
Профессиональное	Создание условий,	1.Использование воспитательного
воспитание	обеспечивающих,	потенциала профильных дисциплин
	формирование	«Введение в специальность»,
	ответственности и	«Введение в технику физического
	аккуратности в работе с	эксперимента», «Измерения в микро- и
	опасными веществами и	наноэлектронике», «Информационные
	при требованиях к нормам	технологии в физических
	высокого класса чистоты	исследованиях», «Экспериментальная
	(B35)	учебно-исследовательская работа» для:
		- формирования навыков безусловного
		выполнения всех норм безопасности на
		рабочем месте, соблюдении мер
		предосторожности при выполнении
		исследовательских и производственных
		задач с опасными веществами и на
		оборудовании полупроводниковой
		промышленности, а также в
		помещениях с высоким классом
		чистоты посредством привлечения
		действующих специалистов
		полупроводниковой промышленности к
		реализации учебных дисциплин и
		сопровождению проводимых у
		студентов практических работ в этих
		организациях, через выполнение
		студентами практических и
		лабораторных работ, в том числе с
		использованием современных САПРов
		для моделирования компонентной базы
		электроники, измерительного и
		технологического оборудования на
		кафедрах, лабораториях и центрах
		ИНТЭЛ; 2.Использование
		воспитательного потенциала
		профильных дисциплин
		«Спецпрактикум по физике
		наносистем», «Спецпрактикум по
		нанотехнологиям», «Специальный
		практикум по физике наносистем»,
		«Современные проблемы физики
		конденсированных сред
		(спецсеминар)», «Экспериментальные

(спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов. 1.Использование воспитательного

методы исследования наноструктур

Профессиональное воспитание

Создание условий, обеспечивающих, формирование коммуникативных навыков в области разработки и производства полупроводниковых изделий (В36)

потенциала профильных дисциплин «Введение в специальность», «Введение в технику физического эксперимента», «Измерения в микро- и наноэлектронике», «Информационные технологии в физических исследованиях», «Экспериментальная учебно-исследовательская работа» для: - формирования навыков безусловного выполнения всех норм безопасности на рабочем месте, соблюдении мер предосторожности при выполнении исследовательских и производственных задач с опасными веществами и на оборудовании полупроводниковой промышленности, а также в помещениях с высоким классом чистоты посредством привлечения действующих специалистов полупроводниковой промышленности к

реализации учебных дисциплин и сопровождению проводимых у студентов практических работ в этих организациях, через выполнение студентами практических и лабораторных работ, в том числе с использованием современных САПРов для моделирования компонентной базы электроники, измерительного и технологического оборудования на кафедрах, лабораториях и центрах ИНТЭЛ: 2.Использование воспитательного потенциала профильных дисциплин «Спецпрактикум по физике наносистем», «Спецпрактикум по нанотехнологиям», «Специальный практикум по физике наносистем», «Современные проблемы физики конденсированных сред (спецсеминар)», «Экспериментальные методы исследования наноструктур (спецсеминар)», для: - формирования профессиональной коммуникации в научной среде; - формирования разностороннего мышления и тренировки готовности к работе в профессиональной и социальной средах полупроводниковой промышленности формирования умений осуществлять самоанализ, осмысливать собственные профессиональные и личностные возможности для саморазвития и самообразования, в целях постоянного соответствия требованиям к эффективным и прогрессивным специалистом для разработок новых материалов и устройств по направлениям, связанным с СВЧ электроникой, микро- и нанопроцессорами, оптическими модуляторами и применением новых материалов в наноэлектронных компонентах через организацию практикумов в организациях по разработке и производству полупроводниковых изделий, использование методов коллективных форм познавательной деятельности, ролевых заданий, командного выполнения учебных заданий и защиту их результатов.

5. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Разделы учебной дисциплины, их объем, сроки изучения и формы контроля:

	•			•			
№ п.п	Наименование раздела учебной дисциплины	Недели	Лекции/ Практ. (семинары)/ Лабораторные работы, час.	Обязат. текущий контроль (форма*, неделя)	Максимальный балл за раздел**	Аттестация раздела (форма*, неделя)	Индикаторы освоения

^{* –} сокращенное наименование формы контроля

Сокращение наименований форм текущего контроля и аттестации разделов:

Обозна	Полное наименование
чение	
КИ	Контроль по итогам

КАЛЕНДАРНЫЙ ПЛАН

Недел	Темы занятий / Содержание	Лек.,	Пр./сем.	Лаб.,
И		час.	, час.	час.

Сокращенные наименования онлайн опций:

Обозна	Полное наименование
чение	
ЭК	Электронный курс
ПМ	Полнотекстовый материал
ПЛ	Полнотекстовые лекции
BM	Видео-материалы
AM	Аудио-материалы
Прз	Презентации
T	Тесты
ЭСМ	Электронные справочные материалы
ИС	Интерактивный сайт

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

^{**} – сумма максимальных баллов должна быть равна 100 за семестр, включая зачет и (или) экзамен

Традиционные лекции, проведение семинаров и интерактивных форм обучения (выступления студентов с докладами, опросы, мастер-классы).

7. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения представлена в следующей таблице:

Компетенция	Индикаторы освоения	Аттестационное мероприятие
	_	(КП 1)
ПК-10	3-ПК-10	3, КИ-8, КИ-15
	У-ПК-10	3, КИ-8, КИ-15
	В-ПК-10	3, КИ-8, КИ-15
ПК-2	3-ПК-2	3, КИ-8, КИ-15
	У-ПК-2	3, КИ-8, КИ-15
	В-ПК-2	3, КИ-8, КИ-15
ПК-8	3-ПК-8	3, КИ-8, КИ-15
	У-ПК-8	3, КИ-8, КИ-15
	В-ПК-8	3, КИ-8, КИ-15
ПК-9	3-ПК-9	3, КИ-8, КИ-15
	У-ПК-9	3, КИ-8, КИ-15
	В-ПК-9	3, КИ-8, КИ-15

Шкалы оценки образовательных достижений

Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего и промежуточного контроля.

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма	Оценка по 4-ех	Оценка	Требования к уровню освоению
баллов	балльной шкале	ECTS	учебной дисциплины
90-100	5 — «отлично»	A	Оценка «отлично» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.
85-89	4 – «хорошо»	В	Оценка «хорошо» выставляется
75-84		С	студенту, если он твёрдо знает
70-74		D	материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

65-69			Оценка «удовлетворительно»
60-64	3 — «удовлетворительно»	Е	выставляется студенту, если он имеет
			знания только основного материала,
			но не усвоил его деталей, допускает
			неточности, недостаточно правильные
			формулировки, нарушения
			логической последовательности в
			изложении программного материала.
Ниже 60	2 — «неудовлетворительно»	F	Оценка «неудовлетворительно»
			выставляется студенту, который не
			знает значительной части
			программного материала, допускает
			существенные ошибки. Как правило,
			оценка «неудовлетворительно»
			ставится студентам, которые не могут
			продолжить обучение без
			дополнительных занятий по
			соответствующей дисциплине.

8. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

ОСНОВНАЯ ЛИТЕРАТУРА:

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА:

ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ:

Специальное программное обеспечение не требуется

LMS И ИНТЕРНЕТ-РЕСУРСЫ:

https://online.mephi.ru/

http://library.mephi.ru/

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

Специальное материально-техническое обеспечение не требуется

10. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ СТУДЕНТОВ

В ходе освоения материалов дисциплины и самоподготовки студентам следует обратить внимание на следующие вопросы:

- 1. Способы металлургической очистки полупроводников.
- 2. Этапы роста по методу Чохральского.
- 3. Способы равномерного легирования полупроводниковых слитков.

- 4. Методы выращивания арсенида галлия.
- 5. Преодоления обогащения расплава арсенида галлия галлием.
- 6. Многокомпонентные полупроводники на основе элементов третьей и пятой групп. Примеры соединений. Основное применение.
 - 7. Материалы для легирования и создания р-п переходов в полупроводниках.
- 8. Оксидные полупроводники. Проводимость в оксидных полупроводниках. Примеры соединений. Основное применение.
- 9. Стеклообразные полупроводники. Способы получения. Характеристика стеклообразных полупроводников по структуре. Примеры соединений. Основное применение.
 - 10. Органические полупроводники. Примеры материалов. Основное применение.
- 11. Материалы, используемые для закрепления полупроводниковых слитков и пластин в процессе их обработки.
- 12. Физико-химические методы обработки поверхности полупроводниковых пластин. Основные вещества, применяемые для этих целей.
- 13. Металлы и химические соединения для изготовления изоляции и металлической разводки. Вещества, используемые для их обработки в процессе изготовления ИС.

11. УЧЕБНО-МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

Итоговая аттестация проводится в устной форме в виде опроса по вопросам, а так же путем письменного решения заданий контрольной работы, если в течение текущей аттестации он показал неудовлетворительные результаты по проверочным работам. На зачет может быть так же вынесена дополнительная проработка.

Автор(ы):

Самотаев Николай Николаевич, к.т.н.